
Labeled object representation and
manipulation with ITK

Gaëtan Lehmann1

September 12, 2007

1INRA, UMR 1198; ENVA; CNRS, FRE 2857, Biologie du Développement et Reproduction, Jouy en
Josas, F-78350, France.

Abstract

Richard Beare has recently introduced a new filter to efficiently labelize the connected component
with ITK, and has also proposed to use the run-length encoding used in that filter to implement some
of the most useful binary mathematical morphology operators: the opening by attribute. Following that
idea, and after have searched a way to use the ITK’s spatial objects for this task, a new set of classes
have been developed to represent and manipulate the labeledimages and the objects within them in ITK.
Those new classes have been used to implement several labeled images manipulation based on object
attributes, as well as the binary specialization of some mathematical morphology filter already included
in ITK, and not related to the attribute of the objects. With those last filters, this contribution comes with
49 new classes, and should greatly enhance the binary mathematical morphology in ITK.

All the source codes are provided, as well as a full set of tests and several usage examples of the new
classes.

Contents

1 Introduction 2

2 Definitions 3
2.1 Label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Labeled image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Binary image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Existing classes and naming convention in ITK 4

4 Data representation 5
4.1 itk::LabelCollectionImage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 itk::LabelObject and its specializations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

itk::ShapeLabelObject attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
itk::StatisticsLabelObject attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.3 itk::LabelObjectLine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8



2

5 General view of the usage 8
5.1 Generating the itk::LabelCollectionImage. . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 Valuating the attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.3 Manipulating the itk::LabelCollectionImage. . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.4 Generating an itk::Image from the itk::LabelCollectionImage . . . . . . . . . . . . . . . . . 10

6 Prebuilt mini-pipeline filters 10
6.1 Binary filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.2 Label filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

7 Binary specialization of mathematical morphology filters 11

8 Computation details 12
8.1 Binary image moments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
8.2 Roundness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8.3 Pixel’s neighborhood. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

9 Usage examples 15
9.1 Prebuilt pipelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Binary shape opening. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Statistics relabel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Label shape keep N obejcts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Binary fill holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

9.2 LabelObject and LabelCollectionImage manipulation. . . . . . . . . . . . . . . . . . . . . 18
AttributeLabelObject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

9.3 Reading attribute values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
9.4 The mask features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
9.5 A full python example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

10 Threading support 28

11 In place filtering 29

12 Wrappers support 29

13 Known bugs and future work 30

14 Conclusion 30

15 Acknowledgments 30

1 Introduction

Identifying the objects in an image is a very common task, often realized by producing an image of the
same size with a single pixel value per object. This image is called a labeled image. There are several way
to create this image. It can be done by searching the connected components in a binary image, it can be



3

produced directly by some algorithms, like the watershed transform, it can even be simply done by hand,
etc.

2 Definitions

In that article, some terms will be cited very frequently. I will try to define them, in the context of the image
analysis.

2.1 Label

A label is an identifier of something with the same caracteristics in the image. Those caracteristics can be
whatever you want, for example, the range of pixel values, the same object in sense of connected component,
etc. A label can be represented by anything and only need to beunique in the image. It doesn’t even
require to be ordered. In practice, we choose to use the integral number types, for several reasons: they are
commonly used in image analysis, they efficiently reprensent the label in memory, and its easy to find the
next label by adding 1.

2.2 Labeled image

A label image is an image which contains several labeled pixels. Often, the labels are representing some
objects placed on a background, and so the label image may usea particular label for the background.

(a) A label Image. (b) The same image with colored labels

Figure 1: (a) the label image of connected components in Figure2. (b) is the same image with labels colored
with itk::LabelToRGBImageFilter.

2.3 Binary image

A binary image is an image with two labels: a foreground labeland a background label. In practice, the
binary images are using a pixel type able to store more than those two values. The foreground is thus defined



2.4 Attribute 4

with a particular label, and the other label in the image are considered as the background. A side effect of
that is that a labeled image can be considered as a binary image, and so, it let us manipulate a single object
in a labeled image.

(a) A simple binary image. (b) A binary image, or a label image?

Figure 2: (a) is a simple binary image. Usually, the white pixel have the value 255, and the background the
value 0. (b) contains 3 values (0, 100 and 200). The foreground value must be defined by the user, either 0,
100 or 200, and the values which are not the foreground are in the background.

2.4 Attribute

An attribute is a value of any type associated with a label. Itcan be for example the size of an object, the
mean of its pixels intensities, etc.

3 Existing classes and naming convention in ITK

In ITK, the labeled and the binary images are implemented as asimple itk::Image. The pixel types used
are most of the time integral, signed or unsigned, but may be of other types. Several definitions of a binary
image or used in ITK. Depending of the class which implement it, a binary image can be:

• All the pixels with a given value are in the foreground. The others are in the background. That’s the
definition proposed in that article.

• All the pixels with a given value are in the background. The others are in the foreground.

• All the pixels greater than a value (zero by default, or the mean of the maximum value in the im-
age and the minimum value in the image) are in the foreground.The other are in the background.
This definition is often used in the levelset framework, where a border can be defined at a subpixel
resolution.

All those definitions should be uniformized to enhance user experience with ITK. In that article (and all the
others from the same author), the first one is the only one used.



5

The filter which are mainpulating binary images are often prefixed with the word ”Binary”, to differenciate
the grayscale version which don’t have a prefix. It seem to be aquite good practice which have been kept in
that article.

The filter dedicated to the manipulation of labeled images have the word ”Label” somewhere in there name.
Again, it seem to be a good practice which have been kept in that article.

4 Data representation

The labeled images are often used the represent the connected components of an image. In this contribution,
another representation has been chosen.

The objects contained in the image, as connected component,can be efficiently stored in memory as a set
of lines, using the run-length encoding: a starting point for each line, and the length of the line on a given
dimension (by convention, the dimension 0).

The image is a collection of those objects, which also store some values of the image, like its size, its
spacing, etc.

4.1 itk::LabelCollectionImage

Theitk::LabelCollectionImageclass is in charge of managing the collection of labeled objects of the image,
as well as storing the metadata associated with the image like the spacing, the physical position - all the
metadata found initk::Image.

The itk::LabelCollectionImageprovide a part of the API of theitk::Imageclass, and so can be manipulated
as an image1 in many cases. The performance can be very different however, because of the very different
data structure used.

Theitk::LabelCollectionImageis a templated class, which take a single parameter: the typeof labeled object
stored by that class. The dimension of the image is took from the labeled objectclass, and thus don’t need
to be defined as template parameter of that class. The pixel type of the image also comes from thelabeled
objectclass.

4.2 itk::LabelObject and its specializations

The itk::LabelObjectclass represent the label obejcts. It has two main features:

• It manage the set pixels which compose the object. The pixelsare stored using the run-length encod-
ing.

• It has a label.

No attribute are stored in this class, which can thus be seen as the base class for the objects with attributes,
or which can be used when no attributes are required.

The itk::LabelObjectclass is templated and takes to required template parameters:

1It doesn’t support the itk::Image iterators though



4.2 itk::LabelObject and its specializations 6

• the type of the label,

• the dimension of the image.

Several subclasses are provided with that contribution, tocover the most common usages of the labeled
objects manipulation:

• itk::AttributeLabelObjectis able to store a generic attribute. It is generic in the sense that its type is
given in template parameter.

• itk::ShapeLabelObjectcontains numerous attribute related to the shape of the labeled object. Com-
puting the values of those attributes does not require a feaure image.

• itk::StatisticsLabelObjectcontains numerous statistics about the grey values of a feature image in the
same place than the labeled object. Computing the values of those attributesdoesrequire a feature
image.

The classesitk::ShapeLabelObjectand itk::StatisticsLabelObjecthave been created to reduce the number
of filters made to manipulate the attributes, and to make the computation of all the set of attributes much
efficient. In the early stage of development, all the attributes were managed as inAttributeLabelObject, and
a set of 8 classes made to manipulate a single attribute were provided, leading to a huge number of classes.

The scalar values of the attributes of theitk::ShapeLabelObjectand theitk::StatisticsLabelObjectclasses
are often given both in pixel and in physical units, in order to be able to give some parameter independant
of the image spacing.

Both itk::ShapeLabelObjectand itk::StatisticsLabelObjectare templated classes. They take the
same template parameters than theitk::LabelObject class. The 2 first template parameters of the
itk::AttributeLabelObjectclass or the same than theitk::LabelObjectclass. The third one is the attribute
type.

itk::ShapeLabelObject attributes

• Sizeis the size of the object in number of pixels. Its type isunsigned long.

• PhysicalSizeis the size of the object in physical unit. It is equal to theSizemultiplicated by the
physical pixel size. Its type isdouble.

• Centroid is the position of the center of the shape in physical coordinates. It is not constrained to be
in the object, and thus can be outside if the object is not convex. Its type isPoint¡ double, ImageDi-
mension ¿.

• Regionis the bounding box of the object given in the pixel coordinates. The physical coordinate can
easily be computed from it. Its type isImageRegion¡ ImageDimension ¿.

• RegionElongationis the ratio of the longest physical size of the region on one dimension and its
smallest physical size. This descriptor is not robust, and in particular is sensitive to rotation. Its type
is double.

• SizeRegionRatiois the ratio of the size of the object region (the bounding box) and the real size of the
object. Its type isdouble.



4.2 itk::LabelObject and its specializations 7

• SizeOnBorderis the number of pixels in the objects which are on the border of the image. This
attribute is particulary useful to remove the objects whichare touching too much the border. Its type
is unsigned long.

• FeretDiameteris the diameter in physical units of the sphere which includeall the object. The feret
diameter is not computed by default, because of its high computation. Its type isdouble.

• BinaryPrincipalMomentscontains the principal moments. Its type isitk::Vector¡ double, ImageDi-
mension ¿.

• BinaryPrincipalAxescontains the principal axes of the object. Its type isitk::Matrix¡ double, Im-
ageDimension, ImageDimension ¿.

• BinaryElongationis the elongation of the shape, computed as the ratio of the largest principal moment
by the smallest principal moment. Its value is greater or equal to 1 Its type sidouble.

itk::StatisticsLabelObject attributes

• Minimumis the minimum value in the feature image for the object. Its type is the feature image pixel
type.

• MinimumIndexis the index position in the image where the first minimum was found. Its type isIndex¡
ImageDimension ¿.

• Maximumis the maximum value in the feature image for the object. Its type is the feature image pixel
type.

• MaximumIndexis the index position in the image where the first maximum was found. Its type
isIndex¡ ImageDimension ¿.

• Meanis the mean of the pixel values in the object. Its type isdouble.

• Sumis the sum of all the pixel values in the objects. Its type isdouble.

• Sigmais the standard deviation of the pixels values in the objects. Its type isdouble.

• Varianceis the variance of the pixels values in the objects. Its type isdouble.

• Medianis the median of the pixels values in the obejct. Its type isdouble

• CenterOfGravityis the center of gravity of the object. It type isPoint¡ double ¿.

• Kurtosisis the kurtosis of the pixel values in the objects. Its type isdouble.

• Skewnessis the skewness of the pixel values in the objects. Its type isdouble.

• PrincipalMomentscontains the principal moments. Its type isitk::Vector¡ double, ImageDimension
¿.

• PrincipalAxescontains the principal axes of the object. Its type isitk::Matrix¡ double, ImageDimen-
sion, ImageDimension ¿.

• Elongationis the elongation of the shape, computed as the ratio of the largest principal moment by
the smallest principal moment. Its value is greater or equalto 1 Its type sidouble.



4.3 itk::LabelObjectLine 8

4.3 itk::LabelObjectLine

itk::LabelObjectLineis the object used to store the position and the size of a single line.

5 General view of the usage

5.1 Generating the itk::LabelCollectionImage

The itk::LabelCollectionImageclass provide some methods to fill the image ”by hand”, like the usualSet-
Pixel() method. However, the most efficient way is to convert a labeled image or a binary image stored in
an itk::Image to a itk::LabelCollectionImage, by usingitk::BinaryImageToLabelCollectionImageFilteror
itk::LabelImageToLabelCollectionImageFilter.

5.2 Valuating the attributes

The label objects produced by those filters have no attributevalue set, and thus, the attributes must be
valuated. Some filters are provided for the most common used ones:

• itk::ShapeLabelCollectionImageFilterto fill the attributes of theitk::ShapeLabelObjects,

• anditk::ShapeLabelCollectionImageFilterto fill the attributes of theitk::StatisticsLabelObjects.

For theitk::AttributeLabelObjectclass or other classes, the user must set the value by himself, for example
by implementing a subclass ofitk::InPlaceLabelCollectionImageFilter.

5.3 Manipulating the itk::LabelCollectionImage

Once created and, optionally, valuated, several filters areprovided to manipulate the
itk::LabelCollectionImage:

• An opening can be performed with theOpeningLabelCollectionImageFilterclasses. Those classes
will remove all the objects with an attribute value lower or greater than a given value. Because we
often can use some criteria which have not been used during the segmentation procedure, like the size
of the object, the mean value of its pixels, etc., the attribute opening is often a very efficient way to
enhance a segmentation. For example, after a thresholding of a grayscale image, the objects too small
or too beg to be of interest can be removed that way.

• A fixed number of objects can be kept, with theKeepNObjectsLabelCollectionImageFilterclasses.
They are chosen according to the value of their attribute. The user can choose to keep the ones with
the highest, or with the lowest attribute values.

• The objects can be relabel, with theRelabelLabelCollectionImageFilterclasses. The order of the
label is dependant of the value of the attribute. Again, the user can choose to have the objects with the
highest attribute value in the first labels, or to have the objects with the lowest attribute values in the
first labels.



5.3 Manipulating the itk::LabelCollectionImage 9

(a) A label image (b) All the objects smaller than 1000 pixels re-
moved

(c) All the objects greater than 1000 pixels re-
moved

(d) All the objects with roundness smaller than 0.8
removed

(e) All the objects with elongation smaller than 10
removed

(f) All the objects with perimeter smaller than 100
removed

Figure 3: Some example of opening with different attribute and parameters.



5.4 Generating an itk::Image from the itk::LabelCollectionImage 10

It can also be useful to simply get the attribute values associated with the objects. In that case, the classes
provided in with that article can be used in place ofitk::LabelStatisticsImageFilter, or to get some data about
the shape or the position of the object.

Finally, it has been chosen to develop a specific filter for themorphological reconstruction. It would have
been possible to implement the reconstruction with the mostcommon case (build the object collection,
valuate the attributes filter the object, and rebuild the image), but in order to make it compatible with the
ShapeLabelObjectandStatisticsLabelObject, the reconstruction filter filters the collection directly,without
setting an attribute in the objects2.

5.4 Generating an itk::Image from the itk::LabelCollectionImage

Once the manipulation of the objects is done, it can be usefulto go back to a more classicitk::Image. Several
classes are provided to do that:

• The itk::LabelCollectionImageToLabelImageFilterclass simply convert aitk::LabelCollectionImage
to a labeled image stored in aitk::Image.

• The itk::LabelCollectionImageToBinaryImageFilterput all the objects in the foreground of a bi-
nary image stored in a itk::Image. It is intended to be used with an image produced by the
itk::BinaryImageToLabelCollectionImageFilter. The background values of the original image can
also be restored by this filter.

• The itk::LabelCollectionImageToMaskImageFilterclass can be used to mask an image with the ob-
jects of theitk::LabelCollectionImage. With that filter, the image can be cropped to contain only the
non-masked zone3 , or the non-masked zone padded by a user defined number of pixels.

• Finally, itk::LabelCollectionImageToAttributeImageFilterproduce anitk::Imagewith the value of the
attribute of the objects of theitk::LabelCollectionImage. This filter is mostly useful to have a global
view of the attribute values in the image.

6 Prebuilt mini-pipeline filters

The general view of the previous section show a very common way to use those classes. To make easier to
use, some prebuilt classes have been made, to perform the mini-pipeline:

• creation of theitk::LabelCollectionImagefrom anitk::Image,

• valuation of the attribute(s) of the objects,

• filtering of theitk::LabelCollectionImage,

• creation of anitk::Image from the filtereditk::LabelCollectionImage,

2I’m not really pleased with that design though, and I’thinking about reimplementing it using the generic attributes. Itwould
have no impact on the binary filters API.

3 The code used to produce the output region based on the content of the image is partially copied from a contribution of Peter
Cechhttp://www.vision.ee.ethz.ch/∼pcech/itkAutoCropImageFilter/.

http://www.vision.ee.ethz.ch/~pcech/itkAutoCropImageFilter/


6.1 Binary filters 11

with a specific attribute.

Because the objects are often get from a labeled image or froma binary image, those filters have been made
for binary, and labeled images.

6.1 Binary filters

• itk::BinaryAttributeKeepNObjectsImageFilter

• itk::BinaryAttributeOpeningImageFilter

• itk::BinaryShapeKeepNObjectsImageFilter

• itk::BinaryShapeOpeningImageFilter

• itk::BinaryStatisticsKeepNObjectsImageFilter

• itk::BinaryStatisticsOpeningImageFilter

6.2 Label filters

• itk::LabelAttributeKeepNObjectsImageFilter

• itk::LabelAttributeOpeningImageFilter

• itk::LabelShapeKeepNObjectsImageFilter

• itk::LabelShapeOpeningImageFilter

• itk::LabelStatisticsKeepNObjectsImageFilter

• itk::LabelStatisticsOpeningImageFilter

• itk::ShapeRelabelImageFilter

• itk::StatisticsRelabelImageFilter

7 Binary specialization of mathematical morphology filters

• itk::BinaryClosingByReconstructionImageFilter

• itk::BinaryFillholeImageFilter

• itk::BinaryGrindPeakImageFilter

• itk::BinaryOpeningByReconstructionImageFilter

• itk::BinaryReconstructionByDilationImageFilter

• itk::BinaryReconstructionByErosionImageFilter



12

8 Computation details

8.1 Binary image moments

Central image moments for grayscale images are usually computed as

Cmi, j =
Si, j

M
−Cgi.Cgj (1)

Si, j = ∑
p∈D

(I(p).pi .p j) (2)

whereSi, j is the central moment,D is the domain of definition of the imageI , I(p) is the pixel value of the
image at the positionp, 0≤ i < n, 0≤ i < n, n is the image dimension,pi is the physical position on the
axis i, M is the total mass,Cg is the center of gravity. With binary images,I(p) is either 0 ifp is outside the
object, or 1 ifp is inside.

The complexity isO(NPI ), whereNPI is the number of pixels in the image.

With the run-length encoding of the binary objects, the complexity can be decreased toO(NLO), whereNLO

is the number of lines in the object.

Si, j = ∑
p∈D

(I(p).pi .p j) (3)

= ∑
p∈O

(pi .p j)

= ∑
L∈O

∑
p∈L

(pi .p j)

WhereO is a binary object in the image, andL is a line of the objectO, encoded with the run-length
encoding. In a line,pi is a constant ifi > 0, so,Si, j can be written:

Si, j =











































∑
L∈O

(lL.pi .p j) if i > 0 and j > 0,

∑
L∈O

(

lL.pi . ∑
p∈L

p0

)

if i > 0 and j = 0,

∑
L∈O

(

lL.p j . ∑
p∈L

p0

)

if i = 0 and j > 0,

∑
L∈O

∑
p∈L

p2
0 if i = j = 0.

(4)

It is known that

n

∑
x=0

x =
n(n+1)

2
(5)

n

∑
x=0

x2 =
n(n+1)(2n+1)

6
(6)



8.1 Binary image moments 13

In order to use those formulae in the computation ofSi, j , the physical position has to be expanded in:

p j = o j +sj i j (7)

whereo j is the origin of the line on the axisj, sj is the spacing on the axisj, andi j is the index on the axis
j.

With equations7, 5 and6, it is easy to remove the loop in the computation of the sum of physical positions
of the axis 0:

∑
p∈L

p0 =
lL−1

∑
i0=0

(o0 +s0i0) (8)

= lL.o0 +s0

lL−1

∑
i0=0

i0

= lL.o0 +s0

(

(lL −1)lL
2

)

= lL

(

o0 +
s0(lL −1)

2

)

wherelL is the length of the line (in pixels), and in the sum of the square of the physical positions of the axis
0:

∑
p∈L

p2
0 =

lL−1

∑
i0=0

(o0 +s0i0)
2 (9)

=
lL−1

∑
i0=0

(o2
0 +s2

0i20 +2o0i0)

= lL.o
2
0 +s2

0

lL−1

∑
i0=0

i20 +2o0

lL−1

∑
i0=0

i0

= lL.o
2
0 +s2

0

(

(lL −1)lL(2lL −1)

6

)

+2o0

(

(lL −1)lL
2

)

= lL

(

o2
0 +(lL −1)

(

s2
0(2lL −1)

6
+o0

))

Finally, Si, j , used in the computation of the central moments, is computedas:

Si, j =







































∑
L∈O

(lL.pi .p j) if i > 0 and j > 0,

∑
L∈O

(

pi .l2
L

(

o0 + s0(lL−1)
2

))

if i > 0 and j = 0,

∑
L∈O

(

p j .l2
L

(

o0 + s0(lL−1)
2

))

if i = 0 and j > 0,

∑
L∈O

(

lL
(

o2
0 +(lL −1)

(

s2
0(2lL−1)

6 +o0

)))

if i = j = 0.

(10)



8.2 Roundness 14

8.2 Roundness

The computation works with any image dimension, and so use the definition of volume and area of an
hypersphere in any dimension.

Vn(r) =
π n

2 rn

Γ(n
2 +1)

(11)

whereVn is the volume of the hyperspheren is the image dimension, andr is the radius of the hypersphere.

Γ
(n

2
+1

)

=

{

(

n
2

)

! if n is even,
√

π n!!
2(n+1)/2 if n is odd.

(12)

n!! is the double factorial, defined as:

n!! =

{

1 if n < 2,

n(n−2)!! if n≥ 2.
(13)

An(r) =
nVn

r
(14)

whereAn is the area of the hypersphere.

R=
An(r)

a
(15)

whereR is the roundness,a is the measured area of the object4, and ther is the radius of an hypersphere
with the same volume than the object, computed using equation 11.

8.3 Pixel’s neighborhood

The run-length encoding does not allow an easy access to the neighbors of a given pixel. If the neighborhood
of all the pixels must be accessed, it is much easier to convert the itk::LabelCollectionImage to aitk::Image
with the itk::LabelCollectionImageToLabelImageFilter, and use that image to access the neighbors. That’s
what is done initk::ShapeLabelCollectionImageFilterto compute the maximum Feret diameter, and the
perimeter estimation.

4More details about perimeter estimation will be published in another article.



15

9 Usage examples

9.1 Prebuilt pipelines

Binary shape opening

The source code is available in the filebinary shape opening.cxx.

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkSimpleFilterWatcher.h"

#include "itkBinaryShapeOpeningImageFilter.h"

int main(int argc, char * argv[])
{

if( argc != 9 )
{
std::cerr << "usage: " << argv[0] << " input output foreground background lambda reverseOrdering connectivity
// std::cerr << " : " << std::endl;
exit(1);
}

const int dim = 3;

typedef itk::Image< unsigned char, dim > IType;

typedef itk::ImageFileReader< IType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );

typedef itk::BinaryShapeOpeningImageFilter< IType > BinaryOpeningType;
BinaryOpeningType::Pointer opening = BinaryOpeningType::New();
opening->SetInput( reader->GetOutput() );
opening->SetForegroundValue( atoi(argv[3]) );
opening->SetBackgroundValue( atoi(argv[4]) );
opening->SetLambda( atof(argv[5]) );
opening->SetReverseOrdering( atoi(argv[6]) );
opening->SetFullyConnected( atoi(argv[7]) );
opening->SetAttribute( argv[8] );
itk::SimpleFilterWatcher watcher(opening, "filter");

typedef itk::ImageFileWriter< IType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetInput( opening->GetOutput() );
writer->SetFileName( argv[2] );
writer->Update();
return 0;

}



9.1 Prebuilt pipelines 16

Statistics relabel

The source code is available in the filestatistics relabel.cxx.

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkSimpleFilterWatcher.h"

#include "itkStatisticsRelabelImageFilter.h"

int main(int argc, char * argv[])
{

if( argc != 8 )
{
std::cerr << "usage: " << argv[0] << " input input output background useBg reverseOrdering attribute"
// std::cerr << " : " << std::endl;
exit(1);
}

const int dim = 3;

typedef itk::Image< unsigned char, dim > IType;

typedef itk::ImageFileReader< IType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );

ReaderType::Pointer reader2 = ReaderType::New();
reader2->SetFileName( argv[2] );

typedef itk::StatisticsRelabelImageFilter< IType, IType > RelabelType;
RelabelType::Pointer relabel = RelabelType::New();
relabel->SetInput( reader->GetOutput() );
relabel->SetFeatureImage( reader2->GetOutput() );
relabel->SetBackgroundValue( atoi(argv[4]) );
relabel->SetUseBackground( atoi(argv[5]) );
relabel->SetReverseOrdering( atoi(argv[6]) );
relabel->SetAttribute( argv[7] );
itk::SimpleFilterWatcher watcher(relabel, "filter");

typedef itk::ImageFileWriter< IType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetInput( relabel->GetOutput() );
writer->SetFileName( argv[3] );
writer->Update();
return 0;

}

Label shape keep N obejcts

The source code is available in the filelabel shape keep n objects.cxx.



9.1 Prebuilt pipelines 17

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkSimpleFilterWatcher.h"

#include "itkLabelShapeKeepNObjectsImageFilter.h"

int main(int argc, char * argv[])
{

if( argc != 7 )
{
std::cerr << "usage: " << argv[0] << " input output background nb reverseOrdering attribute" << std::endl;
// std::cerr << " : " << std::endl;
exit(1);
}

const int dim = 3;

typedef itk::Image< unsigned char, dim > IType;

typedef itk::ImageFileReader< IType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );

typedef itk::LabelShapeKeepNObjectsImageFilter< IType > LabelOpeningType;
LabelOpeningType::Pointer opening = LabelOpeningType::New();
opening->SetInput( reader->GetOutput() );
opening->SetBackgroundValue( atoi(argv[3]) );
opening->SetNumberOfObjects( atoi(argv[4]) );
opening->SetReverseOrdering( atoi(argv[5]) );
opening->SetAttribute( argv[6] );
itk::SimpleFilterWatcher watcher(opening, "filter");

typedef itk::ImageFileWriter< IType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetInput( opening->GetOutput() );
writer->SetFileName( argv[2] );
writer->Update();
return 0;

}

Binary fill holes

The source code is available in the filebinary fillhole.cxx.

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkCommand.h"
#include "itkSimpleFilterWatcher.h"

#include "itkLabelObject.h"
#include "itkLabelCollectionImage.h"



9.2 LabelObject and LabelCollectionImage manipulation 18

#include "itkBinaryFillholeImageFilter.h"

int main(int argc, char * argv[])
{

if( argc != 5 )
{
std::cerr << "usage: " << argv[0] << " input output conn fg" << std::endl;
// std::cerr << " : " << std::endl;
exit(1);
}

const int dim = 2;

typedef itk::Image< unsigned char, dim > IType;

typedef itk::ImageFileReader< IType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
reader->Update();

typedef itk::BinaryFillholeImageFilter< IType > I2LType;
I2LType::Pointer reconstruction = I2LType::New();
reconstruction->SetInput( reader->GetOutput() );
reconstruction->SetFullyConnected( atoi(argv[3]) );
reconstruction->SetForegroundValue( atoi(argv[4]) );

// reconstruction->SetBackgroundValue( atoi(argv[5]) );
itk::SimpleFilterWatcher watcher(reconstruction, "filter");

typedef itk::ImageFileWriter< IType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetInput( reconstruction->GetOutput() );
writer->SetFileName( argv[2] );
writer->Update();
return 0;

}

9.2 LabelObject and LabelCollectionImage manipulation

AttributeLabelObject

TheAttributeLabelObjectlet the user specify the type of the attribute he wants to use,and thus is the good choice to
implement a new attribute.

The source code is available in the filegeneric attribute.cxx.

First we include the headers of the class we will use, and parse the command line.

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

#include "itkAttributeLabelObject.h"
#include "itkLabelCollectionImage.h"



9.2 LabelObject and LabelCollectionImage manipulation 19

#include "itkLabelImageToLabelCollectionImageFilter.h"

#include "itkAttributeKeepNObjectsLabelCollectionImageFilter.h"
#include "itkAttributeOpeningLabelCollectionImageFilter.h"
#include "itkAttributeRelabelLabelCollectionImageFilter.h"

#include "itkLabelCollectionImageToAttributeImageFilter.h"
#include "itkLabelCollectionImageToLabelImageFilter.h"

int main(int argc, char * argv[])
{

if( argc != 10 )
{
std::cerr << "usage: " << argv[0] << " label input attr keep open relabel bg lambda nb" << std::endl;
// std::cerr << " : " << std::endl;
exit(1);
}

Declare the dimension used, and the type of the image for input and output.

const int dim = 2;
typedef unsigned char PType;
typedef itk::Image< PType, dim > IType;

The AttributeLabelObject class take 3 template parameters: the 2 ones from the LabelObject class, and the type of the
attribute associated with each node. Here we have chosen a double. We then declares the type of the LabelCollection-
Image with the type of the label object.

typedef itk::AttributeLabelObject< unsigned long, dim, double > LOType;
typedef itk::LabelCollectionImage< LOType > LCIType;

We read the input images.

typedef itk::ImageFileReader< IType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );

ReaderType::Pointer reader2 = ReaderType::New();
reader2->SetFileName( argv[2] );

And convert the label image to a LabelCollectionImage.

typedef itk::LabelImageToLabelCollectionImageFilter< IType, LCIType > I2LType;
I2LType::Pointer i2l = I2LType::New();
i2l->SetInput( reader->GetOutput() );
i2l->SetBackgroundValue( atoi(argv[7]) );

The next step is made outside the pipeline model, so we call Update() now.



9.2 LabelObject and LabelCollectionImage manipulation 20

i2l->Update();
reader2->Update();

Now we will valuate the attribute. The attribute will be the mean of the pixels values in the 2nd image. Note that the
StatisticsLabelObject can give us that value, without having to code that by hand - that’s an example.

Lets begin by declaring the iterator for the objects in the image, and get the object container, to reuse it later.

LCIType::LabelObjectContainerType::const_iterator it;
LCIType::Pointer labelCollection = i2l->GetOutput();
const LCIType::LabelObjectContainerType & labelObjectContainer = labelCollection->GetLabelObjectContai

Now iterate over all the objects in the image.

for( it = labelObjectContainer.begin(); it != labelObjectContainer.end(); it++ )
{

The label is there if we need it, but it can also be found at labelObject-¿GetLabel().

const PType & label = it->first;
LOType * labelObject = it->second;

Init the variables used for the computation.

double mean = 0;
unsigned long size = 0;

Create the iterator for the lines, and iterate over them

LOType::LineContainerType::const_iterator lit;
LOType::LineContainerType lineContainer = labelObject->GetLineContainer();

for( lit = lineContainer.begin(); lit != lineContainer.end(); lit++ )
{
const LCIType::IndexType & firstIdx = lit->GetIndex();
const unsigned long & length = lit->GetLength();

size += length;

Then iterate over all the pixels in the line, and get the pixelvalues in the feature image to compute their mean.

long endIdx0 = firstIdx[0] + length;
for( LCIType::IndexType idx = firstIdx; idx[0]<endIdx0; idx[0]++)

{
mean += reader2->GetOutput()->GetPixel( idx );
}

}

Complete the compuation of the mean, and set it as attibute value for the current object.

mean /= size;
labelObject->SetAttribute( mean );



9.2 LabelObject and LabelCollectionImage manipulation 21

The LabelObject class provides a Print() method to display its ivars.

labelObject->Print( std::cout );

}

Now that the objects have their attribute, we are free to manipulate them with the common filters, or by hand. The
default accessor (AttributeLabelObject) is the wright onewhen using AttributeLabelObject so we don’t have to specify
it. A different one can be used if needed though.

typedef itk::AttributeKeepNObjectsLabelCollectionImageFilter< LCIType > KeepType;
KeepType::Pointer keep = KeepType::New();
keep->SetInput( labelCollection );
keep->SetReverseOrdering( true );
keep->SetNumberOfObjects( atoi(argv[9]) );

Prevent the filter to run in place, so the input image is not modified.

keep->SetInPlace( false );

typedef itk::AttributeOpeningLabelCollectionImageFilter< LCIType > OpeningType;
OpeningType::Pointer opening = OpeningType::New();
opening->SetInput( labelCollection );
opening->SetLambda( atof(argv[8]) );
keep->SetInPlace( false );

typedef itk::AttributeRelabelLabelCollectionImageFilter< LCIType > RelabelType;
RelabelType::Pointer relabel = RelabelType::New();
relabel->SetInput( labelCollection );
keep->SetInPlace( false );

The attribute values can be put directly in a classic image.

typedef itk::LabelCollectionImageToAttributeImageFilter< LCIType, IType > A2IType;
A2IType::Pointer a2i = A2IType::New();
a2i->SetInput( labelCollection );

Or the label collection can be converted back to an label image, or to a binary image (not shown here)

typedef itk::LabelCollectionImageToLabelImageFilter< LCIType, IType > L2IType;
L2IType::Pointer l2i = L2IType::New();

Finally, write the results

typedef itk::ImageFileWriter< IType > WriterType;
WriterType::Pointer writer = WriterType::New();

writer->SetInput( a2i->GetOutput() );
writer->SetFileName( argv[3] );
writer->Update();

writer->SetInput( l2i->GetOutput() );



9.3 Reading attribute values 22

l2i->SetInput( keep->GetOutput() );
writer->SetFileName( argv[4] );
writer->Update();

l2i->SetInput( opening->GetOutput() );
writer->SetFileName( argv[5] );
writer->Update();

l2i->SetInput( relabel->GetOutput() );
writer->SetFileName( argv[6] );
writer->Update();

return 0;
}

9.3 Reading attribute values

In that example, we will read a binary image, and get some of attributes about the obejcts contained in that image. The
source code is available in the fileattribute values.cxx.

First include the classes we’ll use

#include "itkImageFileReader.h"
#include "itkShapeLabelObject.h"
#include "itkLabelCollectionImage.h"
#include "itkBinaryImageToLabelCollectionImageFilter.h"
#include "itkShapeLabelCollectionImageFilter.h"

int main(int, char * argv[])
{

const int dim = 2;

then declare the type of the input image

typedef unsigned char PixelType;
typedef itk::Image< PixelType, dim > ImageType;

read the input image

typedef itk::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );

define the object type. Here the ShapeLabelObject type is chosen in order to read some attribute related to the shape
of the objects (by opposition to the content of the object, with the StatisticsLabelObejct).

typedef unsigned long LabelType;
typedef itk::ShapeLabelObject< LabelType, dim > LabelObjectType;
typedef itk::LabelCollectionImage< LabelObjectType > LabelCollectionType;



9.4 The mask features 23

convert the image in a collection of objects

typedef itk::BinaryImageToLabelCollectionImageFilter< ImageType, LabelCollectionType > ConverterType;
ConverterType::Pointer converter = ConverterType::New();
converter->SetInput( reader->GetOutput() );
converter->SetForegroundValue( 200 );

and valuate the attributes with the dedicated filter: ShapeLabelCollectionImageFilter

typedef itk::ShapeLabelCollectionImageFilter< LabelCollectionType > ShapeFilterType;
ShapeFilterType::Pointer shape = ShapeFilterType::New();
shape->SetInput( converter->GetOutput() );

update the shape filter, so its output will be up to date

shape->Update();

then we can read the attribute values we’re interested in.BinaryImageToLabelCollectionImageFilterproduces consec-
utives labels, so a simple for loop will do the job.

LabelCollectionType::Pointer collection = shape->GetOutput();
for( int label=1; label<collection->GetNumberOfObjects(); label++ )
{
LabelObjectType::Pointer labelObject = collection->GetLabelObject( label );
std::cout << label << "\t" << labelObject->GetPhysicalSize() << "\t" << labelObject->GetCentroid()
}

return 0;
}

9.4 The mask features

The itk::LabelCollectionImageToMaskImageFilterclass let the user mask a part of anitk::Imagewith the objects of a
itk::LabelCollectionImage. It can also crop the image to contain only the masked region.

The source code is available in the filemask.cxx.

First we include the headers of the class we will use, and parse the command line.

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkSimpleFilterWatcher.h"

#include "itkLabelObject.h"
#include "itkLabelCollectionImage.h"
#include "itkLabelImageToLabelCollectionImageFilter.h"
#include "itkLabelCollectionImageToMaskImageFilter.h"



9.4 The mask features 24

int main(int argc, char * argv[])
{

if( argc != 9 )
{
std::cerr << "usage: " << argv[0] << " labelImage input output label bg neg crop cropBorder" << std::endl;
// std::cerr << " : " << std::endl;
exit(1);
}

the filters are able to work in any dimension. Lets choose 3, sothe program can be tested on 2D and 2D image.

const int dim = 3;

declare the input image type

typedef itk::Image< unsigned char, dim > ImageType;

and the label object type to use. The input image is a label image, so the type of the label can be the same type than
the pixel type. itk::LabelObject is chosen, because only the mask feature is tested here, so we don’t need any attribute.

typedef itk::LabelObject< unsigned char, dim > LabelObjectType;
typedef itk::LabelCollectionImage< LabelObjectType > LabelCollectionImageType;

read the label image and the input image to be masked.

typedef itk::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );

ReaderType::Pointer reader2 = ReaderType::New();
reader2->SetFileName( argv[2] );

convert the label image to a label collection image.

typedef itk::LabelImageToLabelCollectionImageFilter< ImageType, LabelCollectionImageType> I2LType;
I2LType::Pointer i2l = I2LType::New();
i2l->SetInput( reader->GetOutput() );
i2l->SetUseBackground( true );

then mask the image. Two inputs are required (the label collection image, and the image to be masked). The label
used to mask the image is passed with theSetLabel()method. The background in the output image, where the image
is masked, is passed withSetBackground(). The user can choose to mask the image outside the label object (that’s the
default behavior), or inside the label object with the chosen label, by callingSetNegated(). Finally, the image can be
cropped to the masked region, by callingSetCrop(true), or to a region padded by a border, by calling bothSetCrop()
andSetCropBorder(). The crop border defaults to 0, and the image is not cropped bydefault.

typedef itk::LabelCollectionImageToMaskImageFilter< LabelCollectionImageType, ImageType > MaskType;
MaskType::Pointer mask = MaskType::New();
mask->SetInput( i2l->GetOutput() );
mask->SetFeatureImage( reader2->GetOutput() );
mask->SetLabel( atoi(argv[4]) );



9.5 A full python example 25

mask->SetBackgroundValue( atoi(argv[5]) );
mask->SetNegated( atoi(argv[6]) );
mask->SetCrop( atoi(argv[7]) );
MaskType::SizeType border;
border.Fill( atoi(argv[8]) );
mask->SetCropBorder( border );
itk::SimpleFilterWatcher watcher6(mask, "filter");

Finally, save the output image.

typedef itk::ImageFileWriter< ImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetInput( mask->GetOutput() );
writer->SetFileName( argv[3] );
writer->Update();

return 0;
}

9.5 A full python example

In that example, we want to:

• find the nuclei in the first image

• find the spots insice the nucleus in the second image

• get the mean value in the nucleus, in the zone of each spot.

(a) Nucleus (b) Spots

Figure 4: The input images.



9.5 A full python example 26

The source code is available in example.py.

Lets begin with the usualimports.

import itk, sys
itk.auto_progress()

Then declare the type we will use, as isc++ .

Dimension = 2
PixelType = itk.UC
ImageType = itk.Image[ PixelType, Dimension ]

DistancePixelType = itk.F
DistanceImageType = itk.Image[ DistancePixelType, Dimension ]

RGBPixelType = itk.RGBPixel[PixelType]
RGBImageType = itk.Image[ RGBPixelType, Dimension ]

LabelObjectType = itk.StatisticsLabelObject[itk.UL, Dimension]
LabelCollectionImageType = itk.LabelCollectionImage[LabelObjectType]

read the image of the nucleus

nuclei = itk.ImageFileReader[ImageType].New(FileName="images/noyaux.png")

perform a simple binarization. Note that the Otsu filter doesnot use the same convention as usual: the white part is
outside.

otsu = itk.OtsuThresholdImageFilter[ImageType, ImageType].New(nuclei,
OutsideValue=255, InsideValue=0)

The nuclei are not separated. We split them with a watershed.

maurer = itk.SignedMaurerDistanceMapImageFilter[ImageType, DistanceImageType].New(otsu)
watershed = itk.MorphologicalWatershedImageFilter[DistanceImageType, ImageType].New(maurer,

Level=60, MarkWatershedLine=False)
mask = itk.MaskImageFilter[ImageType, ImageType, ImageType].New(watershed, otsu)

And now switch to the label collection representation

label = itk.LabelImageToLabelCollectionImageFilter[ImageType, LabelCollectionImageType]
.New(mask)

compute the attribute values

stats = itk.StatisticsLabelCollectionImageFilter[LabelCollectionImageType, ImageType]
.New(label, nuclei)

drop the objects too small to be a nucleus, and the ones on the border



9.5 A full python example 27

Figure 5: The segmented nuclei. The too small objects and theones on the border have been excluded.

size = itk.ShapeOpeningLabelCollectionImageFilter[LabelCollectionImageType].New(stats,
Attribute=’Size’, Lambda=100)

border = itk.ShapeOpeningLabelCollectionImageFilter[LabelCollectionImageType].New(size,
Attribute=’SizeOnBorder’, Lambda=10, ReverseOrdering=True)

Reoder the labels. The objects with the highest mean are the first ones.

relabel = itk.StatisticsRelabelLabelCollectionImageFilter[LabelCollectionImageType]
.New(border, Attribute=’Mean’)

for visual validation:

labelNuclei = itk.LabelCollectionImageToLabelImageFilter[LabelCollectionImageType,
ImageType].New(relabel)

overlay = itk.LabelOverlayImageFilter[ImageType, ImageType, RGBImageType].New(nuclei,
labelNuclei, UseBackground=True)

itk.write(overlay, "nuclei-overlay.png")

Now, the spots:

spots = itk.ImageFileReader[ImageType].New(FileName="images/spots.png")

Mask the spot image to keep only the nucleus zone. The rest of the image is cropped, excepted a border of 2 pixels

maskSpots = itk.LabelCollectionImageToMaskImageFilter.LI2IUC2.New(relabel, spots, Label=1,
Crop=True, CropBorder=2)

A simple thresholding:



28

th = itk.BinaryThresholdImageFilter[ImageType, ImageType].New(maskSpots, LowerThreshold=110)

Now swith to the label collection representation, and compute the attribute values. This time, the input image is not a
label image, but a binary one.

slabel = itk.BinaryImageToLabelCollectionImageFilter[ImageType, LabelCollectionImageType]
.New(th)

sstats = itk.StatisticsLabelCollectionImageFilter[LabelCollectionImageType, ImageType]
.New(slabel, nuclei)

we know there are for spots in the nubleus, so keep the 4 biggest spots. The other attribute are also usable - we may
have chosen to keep the 4 brightest spots for example.

skeep = itk.ShapeKeepNObjectsLabelCollectionImageFilter[LabelCollectionImageType].New(
sstats, Attribute=’Size’, NumberOfObjects=4)

Reoder the labels. The bigger objects first.

srelabel = itk.StatisticsRelabelLabelCollectionImageFilter[LabelCollectionImageType].New(
skeep, Attribute=’Size’)

Finally, display the values we are interested in:

• the nucleus number,

• the spot position,

• the mean value in the nucleus in the spot zone.

print "nuclei", "x", "y", "mean"

for nl in range(1, relabel.GetOutput().GetNumberOfObjects()+1):
maskSpots.SetLabel(nl)
srelabel.UpdateLargestPossibleRegion()
labeCollection = srelabel.GetOutput()

for l in range(1, labeCollection.GetNumberOfObjects()+1):
lo = labeCollection.GetLabelObject(l)
print nl, lo.GetCentroid()[0], lo.GetCentroid()[1], lo.GetMean()

10 Threading support

When possible, the filters provided with that contribution have been multithreaded. Some of them however, are
not (easily) threadable (theKeepNObjectsandRelabelfilters), are shouldn’t get any performance improvement in a
threaded version (theOpeningfilters).

TheBinaryImageToLabelCollectionImageFilterclass is a slight modification of the Richard Beare’sConnectedCom-
ponentImageFilter, and thus, has not been threaded. It should however be possible to increase its performance that
way.

The classical thread architecture is used when the input image is anImage: the image is splitted in several regions (one
per thread), and each thread work on its own region.



29

nucleus x y mean
1 117.925925926 146.111111111 188.185185185
1 154.25 87.4166666667 126.416666667
1 107.666666667 155.125 122.0
1 95.2380952381 78.2857142857 121.0
2 417.631578947 158.736842105 132.894736842
2 431.277777778 177.388888889 131.222222222
2 390.117647059 207.588235294 96.8235294118
2 396.8 113.666666667 113.2
3 251.148148148 358.814814815 105.037037037
3 189.333333333 407.888888889 111.074074074
3 293.72 454.8 95.48
3 239.888888889 411.111111111 135.222222222

Table 1: Output of the python example.

Because theLabelCollectionImageimage is not an array of pixels, it can’t be splitted that way.Instead, several threads
are created, and try to take an object in the collection. If they get one, they process that object individually, and try
to get another one when the object is processed. If no object can be get, the thread ends. AFastMutexLockis used to
ensure that only one thread take an object at a time.

For the developer, the usage of the threading support is madevery simple, by subclassingLabelCollectionImageFilter,
or InPlaceLabelCollectionImageFilter, and implementing the methodvirtual void ThreadedGenerateData( LabelOb-
jectType * labelObject )in the new class. This method only has to process the labelObject passed in parameter. All the
threading code and mutex lock management is already implemented. The mutex lock remain accessible if the subclass
need to use it, as them LabelObjectContainerLockivar.

11 In place filtering

All the filters which are taking aLabelCollectionImageas input, and are producing aLabelCollectionImageas output,
are implemented as a subclass ofInPlaceLabelCollectionImageFilterand thus are running in place by default.

The use can modify this behavior with theSetInPlace( bool ), InPlaceOn(), andInPlaceOff()methods, as with the
usualInPlaceImageFilter.

To use that feature, a developer only have to subclassInPlaceLabelCollectionImageFilterand implement thevirtual
void ThreadedGenerateData( LabelObjectType * labelObject ), to get easy thread support5, or thevirtual void Gen-
erateData()if the filter is not threadable. In that last case, the only image to manipulate is the one get with the
GetOutput()method, which is the input image if the filter runs in place, ora copy of the input image if the filter is not
running in place.

12 Wrappers support

All the classes provided with that article, excepted the most generic ones made to help the developer to implement
some new features, can be used with WrapITK, and have been fully tested with python.

5see the previous section



30

13 Known bugs and future work

To fit the ITK style, some iterators should be implemented to be able to iterate over all the

• objects,

• lines,

• or pixels

of an image, starting from

• an image,

• an object,

• or a line.

Doing that require a good knowledge of the iterator design. Any help on that point is welcome.

It may be useful to implement the most commonly used opening,keep N objects and relabel transforms in a more
efficient way, by using anAttributeLabelObjectinstead of aShapeLabelObjector aStatisticsLabelObject.

TheBinaryImageToLabelCollectionImageFilterclass should be threaded to get the best of that filter on multiprocessors
systems.

The converters from/to image are provided, but it may be useful to have the converters from/to other objects represen-
tations:

• spatial objects,

• meshs,

• structuring elements.

Finally, all the binary and label filters should be implemented as a subclass ofInPlaceImageFilter.

14 Conclusion

ITK is currently lacking a good way to manipulate the binary objects. With that contribution I hope to have mostly
filled that lack.

15 Acknowledgments

I thank Richard Beare for his suggestion to use the run lengthencoding to represent the binary objects, and Julien
Jomier for his help for the choice tonotuse theitk::SpatialObjectclass as base class of theitk::LabelObejctclass.

I thank Dr Pierre Adenot and MIMA2 confocal facilities (http://mima2.jouy.inra.fr) for providing the 3D test
image. I thank Dr Maria Ballester for providing the image used in the python example.

References

[1] L. Ibanez and W. Schroeder. The ITK Software Guide. Kitware, Inc. ISBN 1-930934-10-6,
http://www.itk.org/ItkSoftwareGuide.pdf, 2003.

http://mima2.jouy.inra.fr

	Introduction
	Definitions
	Label
	Labeled image
	Binary image
	Attribute

	Existing classes and naming convention in ITK
	Data representation
	itk::LabelCollectionImage
	itk::LabelObject and its specializations
	itk::ShapeLabelObject attributes
	itk::StatisticsLabelObject attributes

	itk::LabelObjectLine

	General view of the usage
	Generating the itk::LabelCollectionImage
	Valuating the attributes
	Manipulating the itk::LabelCollectionImage
	Generating an itk::Image from the itk::LabelCollectionImage

	Prebuilt mini-pipeline filters
	Binary filters
	Label filters

	Binary specialization of mathematical morphology filters
	Computation details
	Binary image moments
	Roundness
	Pixel's neighborhood

	Usage examples
	Prebuilt pipelines
	Binary shape opening
	Statistics relabel
	Label shape keep N obejcts
	Binary fill holes

	LabelObject and LabelCollectionImage manipulation
	AttributeLabelObject

	Reading attribute values
	The mask features
	A full python example

	Threading support
	In place filtering
	Wrappers support
	Known bugs and future work
	Conclusion
	Acknowledgments

