Labeled object representation and
manipulation with ITK

Gaétan Lehmann?

September 12, 2007

1INRA, UMR 1198; ENVA; CNRS, FRE 2857, Biologie du Développent et Reproduction, Jouy en
Josas, F-78350, France.

Abstract

Richard Beare has recently introduced a new filter to effitydabelize the connected component
with ITK, and has also proposed to use the run-length engodlsed in that filter to implement some
of the most useful binary mathematical morphology opegattire opening by attribute. Following that
idea, and after have searched a way to use the ITK's spafiettstfor this task, a new set of classes
have been developed to represent and manipulate the labedges and the objects within them in ITK.
Those new classes have been used to implement severaldabelges manipulation based on object
attributes, as well as the binary specialization of somehamaatical morphology filter already included
in ITK, and not related to the attribute of the objects. Withge last filters, this contribution comes with
49 new classes, and should greatly enhance the binary maticehmorphology in ITK.

All the source codes are provided, as well as a full set o§teistl several usage examples of the new

classes.
Contents
1 Introduction 2
2 Definitions 3
2.1 Label 3
2.2 Labeledimage e 3
2.3 Binaryimage. e e 3
24 Attribute. . .. e 4
3 Existing classes and naming convention in ITK 4
4 Data representation 5
4.1 itk::LabelCollectionlmage. e 5
4.2 itk::LabelObject and its specializations, 5
itk::ShapelLabelObject attributes e 6
itk::StatisticsLabelObject attributes. 7

4.3 itk:LabelObjectline 8

5 General view of the usage 8
5.1 Generating the itk::LabelCollectionlmage., 8
5.2 Valuating the attributes 8
5.3 Manipulating the itk::LabelCollectionlmage. 8
5.4 Generating an itk::Image from the itk::LabelColleatimage 10

6 Prebuilt mini-pipeline filters 10
6.1 Binaryfilters e 11
6.2 Labelfilters. L 11

7 Binary specialization of mathematical morphology filters 11

8 Computation details 12
8.1 Binaryimage moments e e e 12
8.2 ROUNANESS e 14
8.3 Pixel'sneighborhood. 14

9 Usage examples 15
9.1 Prebuilt pipelines. 15

Binary shape opening e 15
Statistics relabel 16
Label shape keep Nobejcts. e 16
Binary fillholes e e 17
9.2 LabelObject and LabelCollectionlmage manipulation 18
AttributeLabelObject. e 18
9.3 Reading attribute values. 22
9.4 Themaskfeatures. 23
9.5 Afullpythonexample e 25

10 Threading support 28

11 In place filtering 29

12 Wrappers support 29

13 Known bugs and future work 30

14 Conclusion 30

15 Acknowledgments 30

1 Introduction

Identifying the objects in an image is a very common taskeroftealized by producing an image of the
same size with a single pixel value per object. This imagelied a labeled image. There are several way
to create this image. It can be done by searching the corthect@ponents in a binary image, it can be

produced directly by some algorithms, like the watershaddform, it can even be simply done by hand,
etc.

2 Definitions

In that article, some terms will be cited very frequently. illivy to define them, in the context of the image
analysis.

2.1 Label

A label is an identifier of something with the same caradiessn the image. Those caracteristics can be
whatever you want, for example, the range of pixel valuesstime object in sense of connected component,
etc. A label can be represented by anything and only need tanlmgie in the image. It doesn't even
require to be ordered. In practice, we choose to use theraltagmber types, for several reasons: they are
commonly used in image analysis, they efficiently reprensiemlabel in memory, and its easy to find the
next label by adding 1.

2.2 Labeled image

A label image is an image which contains several labeledlgix®ften, the labels are representing some
objects placed on a background, and so the label image maypesticular label for the background.

(a) Alabel Image. (b) The same image with colored labels

Figure 1: (a) the label image of connected components inr€@ub) is the same image with labels colored
with itk::LabelToRGBImageFilter

2.3 Binary image

A binary image is an image with two labels: a foreground ladoad a background label. In practice, the
binary images are using a pixel type able to store more thasettwo values. The foreground is thus defined

2.4 Attribute 4

with a particular label, and the other label in the image amslered as the background. A side effect of
that is that a labeled image can be considered as a binanejmad so, it let us manipulate a single object
in a labeled image.

(a) A simple binary image. (b) A binary image, or a label image?

Figure 2: (a) is a simple binary image. Usually, the whitesptxave the value 255, and the background the
value 0. (b) contains 3 values (0, 100 and 200). The foregtamatue must be defined by the user, either 0,
100 or 200, and the values which are not the foreground ateeibbackground.

2.4 Attribute

An attribute is a value of any type associated with a labetaft be for example the size of an object, the
mean of its pixels intensities, etc.

3 Existing classes and naming convention in ITK

In ITK, the labeled and the binary images are implemented simpleitk::Image The pixel types used
are most of the time integral, signed or unsigned, but mayflo¢her types. Several definitions of a binary
image or used in ITK. Depending of the class which implemgrt binary image can be:

e All the pixels with a given value are in the foreground. Thiest are in the background. That's the
definition proposed in that article.

¢ All the pixels with a given value are in the background. Theeos$ are in the foreground.

e All the pixels greater than a value (zero by default, or theamef the maximum value in the im-
age and the minimum value in the image) are in the foregrourte other are in the background.
This definition is often used in the levelset framework, veharborder can be defined at a subpixel
resolution.

All those definitions should be uniformized to enhance ugpegence with ITK. In that article (and all the
others from the same author), the first one is the only one.used

The filter which are mainpulating binary images are ofterfipeel with the word "Binary”, to differenciate
the grayscale version which don’t have a prefix. It seem to dpeite good practice which have been kept in
that article.

The filter dedicated to the manipulation of labeled image® hiae word "Label” somewhere in there name.
Again, it seem to be a good practice which have been kept trattiale.

4 Data representation

The labeled images are often used the represent the codrmetgonents of an image. In this contribution,
another representation has been chosen.

The objects contained in the image, as connected comparantye efficiently stored in memory as a set
of lines, using the run-length encoding: a starting poimtefach line, and the length of the line on a given
dimension (by convention, the dimension 0).

The image is a collection of those objects, which also storeesvalues of the image, like its size, its
spacing, etc.

4.1 itk::LabelCollectionimage

Theitk::LabelCollectionimageclass is in charge of managing the collection of labeledaibjef the image,
as well as storing the metadata associated with the imagehg spacing, the physical position - all the
metadata found iftk::Image

Theitk::LabelCollectionimageprovide a part of the API of thitk::Image class, and so can be manipulated
as an imagkin many cases. The performance can be very different howbeeruse of the very different
data structure used.

Theitk::LabelCollectionlmages a templated class, which take a single parameter: theofylpbeled object
stored by that class. The dimension of the image is took fioataibeled objectlass, and thus don’t need
to be defined as template parameter of that class. The pieldf/the image also comes from tladeled
objectclass.

4.2 itk::LabelObject and its specializations

Theitk::LabelObjectclass represent the label obejcts. It has two main features:
¢ It manage the set pixels which compose the object. The patelstored using the run-length encod-
ing.
e It has a label.

No attribute are stored in this class, which can thus be sedmeabase class for the objects with attributes,
or which can be used when no attributes are required.

Theitk::LabelObjectclass is templated and takes to required template parasneter

Lit doesn’t support the itk::Image iterators though

4.2 itk::LabelObject and its specializations 6

e the type of the label,

¢ the dimension of the image.

Several subclasses are provided with that contributiorgoier the most common usages of the labeled
objects manipulation:

e itk::AttributeLabelObjectis able to store a generic attribute. It is generic in the sehat its type is
given in template parameter.

e itk::ShapeLabelObjectontains numerous attribute related to the shape of théeldlmbject. Com-
puting the values of those attributes does not require addgeage.

o itk::StatisticsLabelObjectontains numerous statistics about the grey values of areeahage in the
same place than the labeled object. Computing the valudsoeétattributesloesrequire a feature
image.

The classe#tk::ShapelLabelObjecanditk::StatisticsLabelObjechave been created to reduce the number
of filters made to manipulate the attributes, and to make tmeputation of all the set of attributes much
efficient. In the early stage of development, all the attesuvere managed as AdtributeLabelObjegtand

a set of 8 classes made to manipulate a single attribute wevepd, leading to a huge number of classes.

The scalar values of the attributes of titke:ShapeLabelObjecand theitk::StatisticsLabelObjectlasses
are often given both in pixel and in physical units, in ordebe able to give some parameter independant
of the image spacing.

Both itk::ShapelLabelObjectand itk::StatisticsLabelObjectare templated classes. They take the
same template parameters than fke:LabelObject class. The 2 first template parameters of the
itk::AttributeLabelObjectclass or the same than tlitk::LabelObjectclass. The third one is the attribute

type.

itk::ShapeLabelObject attributes

e Sizeis the size of the object in number of pixels. Its typeisigned long

e PhysicalSizdas the size of the object in physical unit. It is equal to Bieemultiplicated by the
physical pixel size. Its type idouble

e Centroidis the position of the center of the shape in physical coateis. It is not constrained to be
in the object, and thus can be outside if the object is noteaonits type isPointj double, ImageDi-
mension ¢,

e Regionis the bounding box of the object given in the pixel coordesatThe physical coordinate can
easily be computed from it. Its type limageRegionj ImageDimension ¢,

e RegionElongatioris the ratio of the longest physical size of the region on oimedsion and its
smallest physical size. This descriptor is not robust, anghairticular is sensitive to rotation. Its type
is double

e SizeRegionRati the ratio of the size of the object region (the bounding)l@md the real size of the
object. Its type iglouble

4.2

itk::LabelObject and its specializations 7

SizeOnBordeiis the number of pixels in the objects which are on the bordghe image. This
attribute is particulary useful to remove the objects whach touching too much the border. Its type
is unsigned long

FeretDiameteiis the diameter in physical units of the sphere which inclali¢he object. The feret
diameter is not computed by default, because of its high coation. Its type islouble

BinaryPrincipalMomentsontains the principal moments. Its typeitls:Vectorj double, ImageDi-
mension ¢,

BinaryPrincipalAxescontains the principal axes of the object. Its typatks:Matrixj double, Im-
ageDimension, ImageDimension ¢,

BinaryElongationis the elongation of the shape, computed as the ratio of thedaprincipal moment
by the smallest principal moment. Its value is greater oaétul Its type sdouble

itk::StatisticsLabelObject attributes

Minimumis the minimum value in the feature image for the object. \petis the feature image pixel
type.

MinimumIndexs the index position in the image where the first minimum veasfl. Its type iBdex;
ImageDimension .¢,

Maximumis the maximum value in the feature image for the object.yjig tis the feature image pixel
type.

MaximumIndexs the index position in the image where the first maximum wamd. Its type
isindexj ImageDimension. ¢,

Meanis the mean of the pixel values in the object. Its typdasble

Sumis the sum of all the pixel values in the objects. Its typdasble

Sigmais the standard deviation of the pixels values in the objdtdsype isdouble
Varianceis the variance of the pixels values in the objects. Its tgmouble
Medianis the median of the pixels values in the obejct. Its typaoigble
CenterOfGravityis the center of gravity of the object. It typeRPointj double ¢,
Kurtosisis the kurtosis of the pixel values in the objects. Its typddable
Skewnesis the skewness of the pixel values in the objects. Its typeidle

PrincipalMomentscontains the principal moments. Its typetis:Vectorj double, ImageDimension
ér

PrincipalAxescontains the principal axes of the object. Its typaksMatrixj double, ImageDimen-
sion, ImageDimension. ¢,

Elongationis the elongation of the shape, computed as the ratio of tigesaprincipal moment by
the smallest principal moment. Its value is greater or etpuallts type sdouble

4.3 itk::LabelObjectLine 8

4.3 itk::LabelObjectLine

itk::LabelObjectLineis the object used to store the position and the size of aesiimg.

5 General view of the usage

5.1 Generating the itk::LabelCollectionimage

Theitk::LabelCollectionImageclass provide some methods to fill the image "by hand”, like tisualSet-
Pixel() method. However, the most efficient way is to convert a labéteage or a binary image stored in
anitk::Image to aitk::LabelCollectionimage by usingitk::BinarylmageToLabelCollectionimageFiltesr
itk::LabellmageToLabelCollectionimageFilter

5.2 Valuating the attributes

The label objects produced by those filters have no attribatee set, and thus, the attributes must be
valuated. Some filters are provided for the most common used.o

e itk::ShapelLabelCollectionimageFiltao fill the attributes of thetk::ShapelLabelObjest

¢ anditk::ShapelLabelCollectionimageFilteo fill the attributes of thetk::StatisticsLabelObjest

For theitk::AttributeLabelObjectclass or other classes, the user must set the value by hjrfaredixample
by implementing a subclass ibk::InPlaceLabelCollectionimageFilter

5.3 Manipulating the itk::LabelCollectionimage

Once created and, optionally, valuated, several filters gm@vided to manipulate the
itk::LabelCollectionimage

e An opening can be performed with tli@peningLabelCollectionimageFilteslasses. Those classes
will remove all the objects with an attribute value lower aegter than a given value. Because we
often can use some criteria which have not been used durnggiimentation procedure, like the size
of the object, the mean value of its pixels, etc., the attelmpening is often a very efficient way to
enhance a segmentation. For example, after a thresholfingrayscale image, the objects too small
or too beg to be of interest can be removed that way.

e A fixed number of objects can be kept, with tkeepNObjectsLabelCollectionImageFiltelasses.
They are chosen according to the value of their attributee 0$er can choose to keep the ones with
the highest, or with the lowest attribute values.

e The objects can be relabel, with tiRelabelLabelCollectionimageFiltezlasses. The order of the
label is dependant of the value of the attribute. Again, ter gan choose to have the objects with the
highest attribute value in the first labels, or to have thectsj with the lowest attribute values in the
first labels.

5.3 Manipulating the itk::LabelCollectionlmage

(a) Alabel image (b) All the objects smaller than 1000 pixels re-
moved

(c) All the objects greater than 1000 pixels (d) All the objects with roundness smaller than 0.8
moved removed

(e) Allthe objects with elongation smaller than (f All the objects with perimeter smaller than 100
removed removed

Figure 3: Some example of opening with different attribute parameters.

5.4 Generating an itk::Image from the itk::LabelCollectionimage 10

It can also be useful to simply get the attribute values aasat with the objects. In that case, the classes
provided in with that article can be used in placdtkfLabelStatisticsimageFilteror to get some data about
the shape or the position of the object.

Finally, it has been chosen to develop a specific filter formiwephological reconstruction. It would have
been possible to implement the reconstruction with the mostmon case (build the object collection,
valuate the attributes filter the object, and rebuild thege)abut in order to make it compatible with the
ShapelLabelObjeand StatisticsLabelObjecthe reconstruction filter filters the collection directlyithout
setting an attribute in the objects

5.4 Generating an itk::Image from the itk::LabelCollectionimage

Once the manipulation of the objects is done, it can be usefyd back to a more classik::Image Several
classes are provided to do that:

e Theitk::LabelCollectionimageToLabellmageFiltetass simply convert dk::LabelCollectionimage
to a labeled image stored int&::Image.

e The itk::LabelCollectionimageToBinarylmageFiltgput all the objects in the foreground of a bi-
nary image stored in a itk::Image. It is intended to be usethwn image produced by the
itk::BinarylmageToLabelCollectionlmageFilterThe background values of the original image can
also be restored by this filter.

e Theitk::LabelCollectionimageToMaskimageFiltetass can be used to mask an image with the ob-
jects of theitk::LabelCollectionlmage With that filter, the image can be cropped to contain only the
non-masked zorfg or the non-masked zone padded by a user defined number ¢.pixe

e Finally, itk::LabelCollectionimageToAttributelmageFilt@roduce aritk::Image with the value of the
attribute of the objects of thigk::LabelCollectionimage This filter is mostly useful to have a global
view of the attribute values in the image.

6 Prebuilt mini-pipeline filters

The general view of the previous section show a very commaontwase those classes. To make easier to
use, some prebuilt classes have been made, to perform thpimatine:

creation of thatk::LabelCollectionlmagdrom anitk::Image,

valuation of the attribute(s) of the objects,

filtering of theitk::LabelCollectionimage

creation of aritk::Image from the filtereditk::LabelCollectionimage

2'm not really pleased with that design though, and I'thimkiabout reimplementing it using the generic attributesvdtild
have no impact on the binary filters API.

8 The code used to produce the output region based on the tarfiténe image is partially copied from a contribution of Rrete
Cechhttp: //www. vi si on. ee. et hz. ch/ ~pcech/ it kAut oCropl mageFilter/.

http://www.vision.ee.ethz.ch/~pcech/itkAutoCropImageFilter/

6.1 Binary filters 11

with a specific attribute.

Because the objects are often get from a labeled image ordrbmary image, those filters have been made
for binary, and labeled images.

6.1 Binary filters

e itk::BinaryAttributeKeepNObjectsimageFilter
e itk::BinaryAttributeOpeninglmageFilter

e itk::BinaryShapeKeepNObjectsimageFilter

e itk::BinaryShapeOpeninglmageFilter

e itk::BinaryStatisticsKeepNObjectsimageFilter

e itk::BinaryStatisticsOpeninglmageFilter

6.2 Label filters

e itk::LabelAttributeKeepNObjectsimageFilter
e itk::LabelAttributeOpeninglmageFilter

e itk::LabelShapeKeepNObjectsimageFilter

e itk::LabelShapeOpeningimageFilter

e itk::LabelStatisticsKeepNObjectsimageFilter
o itk::LabelStatisticsOpeninglmageFilter

e itk::ShapeRelabellmageFilter

e itk::StatisticsRelabellmageFilter

7 Binary specialization of mathematical morphology filters

e itk::BinaryClosingByReconstructionimageFilter
e itk::BinaryFillholelmageFilter

e itk::BinaryGrindPeaklmageFilter

e itk::BinaryOpeningByReconstructionimageFilter
e itk::BinaryReconstructionByDilationimageFilter

e itk::BinaryReconstructionByErosionimageFilter

12

8 Computation details

8.1 Binary image moments

Central image moments for grayscale images are usually ctad@s

Cm.j = % —Cg.ng (l)
S = (1(p)-pi-pj) 2
j pgb j

where§ ; is the central momenD is the domain of definition of the imadel (p) is the pixel value of the

image at the positiop, 0 <i < n, 0<i < n, nis the image dimensiory; is the physical position on the
axisi, M is the total mas$Cgis the center of gravity. With binary imagdgp) is either 0 ifp is outside the

object, or 1 ifpis inside.

The complexity i9O(Np), whereNp is the number of pixels in the image.

With the run-length encoding of the binary objects, the claxip/ can be decreased @(N,,), whereN,,
is the number of lines in the object.

S = ED(I(p)-pi.pj) (3)

pe

= p;(pi.pj)
= L;%(pi-pj)

Where O is a binary object in the image, andis a line of the objec, encoded with the run-length
encoding. In a linep; is a constant if > 0, s0,§ ; can be written:

S (IL.pi-pj) ifi>0andj >0,
LeO
S <I|_.pi. S p0> ifi>0andj=0,
S,j _ LeO pelL (4)
> (IL.pj. S po> ifi=0andj >0,
LeO peL
PN ifi=j=0.
LeOpeL
It is known that
n
« — n(n+1) 5)
N 2
n
2 - n(n+1)(2n+1) ©)

x
|

8.1 Binary image moments 13

In order to use those formulae in the computatiorggf the physical position has to be expanded in:
Pj = 0j +S;ji; (7)

whereo; is the origin of the line on the axig s; is the spacing on the axis andi; is the index on the axis
j.

With equations?, 5 and®6, it is easy to remove the loop in the computation of the sunhgbjzal positions
of the axis O:

IL—-1

Po = (0o + Soio) (8)
-1
= lL.opg+s Z i
io=0

= |L<Oo+w>

wherel_ is the length of the line (in pixels), and in the sum of the sgqu the physical positions of the axis
0:

-1
2 P \2
P = (00 + Soio) ©)
-1
= z (OS—I—S%i%—FZOoio)
io=0
IL—-1 IL—-1
= ||_.O(2)—|—% Z i%—|—200 Z i
io0=0 io=0

— LB+ <(IL — l)IE(ZIL — 1)> 420 (@)
|L<og+(|L—1) (%mo))

Finally, § j, used in the computation of the central moments, is compaged

Lgo(lL-pi-pj) ifi >0andj >0,
5 (p? (o0+2050)) if i > 0andj =0,
- EZ(D;‘-'E (%%—M)) if i =0andj >0, (10)
S
2 (1 (c3+(-1) (Lﬂg*” +o))) ifi=j=0

8.2 Roundness 14

8.2 Roundness

The computation works with any image dimension, and so usalé#iinition of volume and area of an
hypersphere in any dimension.

yeigk

whereV, is the volume of the hypersphends the image dimension, amds the radius of the hypersphere.

n o if nis even
r<—+1) _J3) o i (12)
2 VTgaz if nis odd
n!! is the double factoria) defined as:
ol — 1 .|f n<2, (13)
nin—2)!! if n>2.
nV{
An(r) = = (14)
whereA, is the area of the hypersphere.
R= A“—;r) (15)

whereR is the roundnessa is the measured area of the obfecind ther is the radius of an hypersphere
with the same volume than the object, computed using equafio

8.3 Pixel's neighborhood

The run-length encoding does not allow an easy access teifklors of a given pixel. If the neighborhood
of all the pixels must be accessed, it is much easier to cotiveitk::LabelCollectionlmage toitk::Image

with theitk::LabelCollectionimageToLabellmageFilteand use that image to access the neighbors. That’s
what is done initk::ShapeLabelCollectionimageFiltelo compute the maximum Feret diameter, and the
perimeter estimation.

4More details about perimeter estimation will be publishedmother article.

15

9 Usage examples

9.1 Prebuilt pipelines
Binary shape opening
The source code is available in the filmary_shape_opening.cxx

#include "itklmageFil eReader. h"
#include "itklmageFileWiter.h"
#include "itkSinpl eFilterWatcher.h"

#incl ude "itkBi naryShapeQpeni ngl mageFilter.h"

int main(int argc, char * argv[])

{
if(argc 1=9)
{
std::cerr << "usage: " << argv[0] << " input output foreground background |ambda reverseQrdering c
Il std::cerr << " : " << std::endl;
exit(1);
}

const int dim= 3;
typedef itk::lmage< unsigned char, dim> |Type;

typedef itk::lmageFileReader< |Type > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();
reader->Set Fi | eNane(argv[1]);

typedef itk:: Bi naryShapeQpeni ngl mageFilter< | Type > Bi naryQpeni ngType;
Bi nar yQpeni ngType: : Poi nter openi ng = Bi naryQpeni ngType: : New() ;

openi ng->Set | nput (reader->Cet Qut put());

openi ng- >Set For egr oundVal ue(atoi (argv[3]));

openi ng- >Set Backgr oundVal ue(atoi (argv[4]));

openi ng- >Set Lanbda(atof (argv[5]));

openi ng- >Set Rever seOrdering(atoi (argv[6]));

openi ng- >Set Ful | yConnected(atoi (argv[7]));

openi ng->Set Attribute(argv[8]);

itk::SinpleFilterWatcher watcher(opening, "filter");

typedef itk::lmageFileWiter< |Type > WiterType;
WiterType::Pointer witer = WiterType:: New();
writer->Setlnput(opening->GetCQutput());
writer->SetFileNane(argv[2]);
writer->Update();

return 0;

9.1 Prebuilt pipelines 16

Statistics relabel

The source code is available in the fitistics_relabel.cxx

#include "itkl mageFil eReader. h"
#include "itklmageFileWiter.h"
#include "itkSinpl eFilterWatcher.h"

#include "itkStatisticsRel abel I nageFilter.h"

int main(int argc, char * argv[])

{
if(argc '=8)
{
std::cerr << "usage: " << argv[0] << " input input output background useBg reverseOrdering attribut
[l std::cerr << " : " << std::endl;
exit(l);
}

const int dim=3;
typedef itk::lmage< unsigned char, dim> |Type;

typedef itk::lmgeFileReader< |Type > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();
reader->SetFi | eNane(argv[1]);

Reader Type: : Poi nter reader2 = Reader Type:: New();
reader2->Set Fi | eNane(argv[2]);

typedef itk::StatisticsRel abellmageFilter< |Type, |Type > Rel abel Type;
Rel abel Type: : Pointer relabel = Rel abel Type:: New();

rel abel ->Set | nput (reader->CGetQutput());

rel abel - >Set Feat urel mage(reader2->Cet Qutput ());

rel abel - >Set Backgr oundVal ue(atoi (argv[4]));

rel abel - >Set UseBackground(atoi (argv[5]));

rel abel - >Set Rever seOrdering(atoi(argv[6]));

rel abel ->Set Attribute(argv[7]);

itk::SinpleFilterWatcher watcher(relabel, "filter");

typedef itk::lmageFileWiter< |Type > WiterType;
WiterType::Pointer witer = WiterType::New();
writer->Setlnput(relabel->GetCQutput());
writer->SetFileNanme(argv[3]);

writer->Update();

return 0;

Label shape keep N obejcts

The source code is available in the fiddbel_shape keep.n_objects.cxx

9.1 Prebuilt pipelines 17

#include "itkl mageFil eReader. h"
#include "itklmageFileWiter.h"
#include "itkSinpl eFilterWatcher.h"

#include "itkLabel ShapeKeepNbj ect sl mageFilter. h"

int min(int argc, char * argv[])

{
if(argc '=7)
{
std::cerr << "usage: " << argv[0] << " input output background nb reverseOrdering attribute" << st
[l std::cerr << " : " << std::endl;
exit(l);
}

const int dim=3;
typedef itk::lmage< unsigned char, dim> |Type;

typedef itk::lmageFileReader< | Type > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();
reader->SetFi | eNane(argv[1]);

typedef itk::Label ShapeKeepNQbj ect sl mageFilter< | Type > Label Openi ngType;
Label Openi ngType: : Poi nter opening = Label Openi ngType: : New();

openi ng- >Set | nput (reader->Get Qutput ());

openi ng- >Set Backgr oundVal ue(atoi (argv[3]));

openi ng- >Set Nunber O Cbj ect s(atoi (argv[4]));

openi ng- >Set Rever seOrdering(atoi (argv[5]));

openi ng->Set Attribute(argv[6]);

itk::SinpleFilterWtcher watcher(opening, "filter");

typedef itk::lmgeFileWiter< |Type > WiterType;
WiterType::Pointer witer = WiterType:: New();
writer->Setlnput(opening->GetCQutput());
writer->SetFileNanme(argv[2]);

writer->Update();

return 0;

Binary fill holes

The source code is available in the filmary_fillhole.cxx

#include "itkl mageFil eReader. h"
#include "itklmageFileWiter.h"
#include "itkCommand. h"

#include "itkSinpl eFilterWatcher.h"

#include "itkLabel Object.h"
#include "itkLabel Coll ectionl mage. h"

9.2 LabelObject and LabelCollectionimage manipulation 18

#include "itkBinaryFillhol el mageFilter.h"

int main(int argc, char * argv[])

{
if(argc !'=5)
{
std::cerr << "usage: " << argv[0] << " input output conn fg" << std::endl;
Il std::cerr << " : " << std::endl;
exit(l);
}

const int dim= 2;
typedef itk::lmge< unsigned char, dim> |Type;

typedef itk::lmageFileReader< |Type > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();
reader->Set Fi | eNane(argv[1]);

reader - >Updat e() ;

typedef itk::BinaryFillholelmageFilter< | Type > |2LType;
[2LType: : Poi nter reconstruction = |2LType:: New();
reconstruction->Set|nput(reader->CGetQutput());
reconstruction->Set Ful | yConnected(atoi(argv[3]));
reconstruction->Set ForegroundVal ue(atoi(argv[4]));
/1 reconstruction->Set BackgroundVal ue(atoi(argv[5]));
itk::SinpleFilterWtcher watcher(reconstruction, "filter");

typedef itk::lmageFileWiter< |Type > WiterType;
WiterType::Pointer witer = WiterType:: New();

writer->Setlnput(reconstruction->GetCQutput());
writer->SetFileNane(argv[2]);

writer->Update();

return 0;

9.2 LabelObject and LabelCollectionlmage manipulation

AttributeLabelObject

The AttributeLabelObjectet the user specify the type of the attribute he wants to aisé thus is the good choice to
implement a new attribute.

The source code is available in the fijeneric_attribute.cxx

First we include the headers of the class we will use, andegesscommand line.

#include "itkl mageFil eReader. h"
#include "itklmageFileWiter.h"

#include "itkAttributelLabel Object.h"
#include "itkLabel Coll ectionl mage. h"

9.2 LabelObject and LabelCollectionimage manipulation 19

#include "itkLabel | mageToLabel Col | ectionl nageFilter.h"

#include "itkAttribut eKeepNObj ect sLabel Col | ectionl mageFilter.h"
#include "itkAttributeQpeninglLabel Col | ectionl mageFilter.h"
#include "itkAttributeRel abel Label Col | ectionl mageFilter.h"
#include "itkLabel Col | ectionl mageToAttri butel mageFilter.h"
#include "itkLabel Col | ectionl mageTolLabel | mageFilter.h"

int main(int argc, char * argv[])

{
if(argc '=10)
{
std::cerr << "usage: " << argv[0] << " label input attr keep open relabel bg lanbda nb" << std:
[l std::cerr << " : " << std::endl;
exit(l);
}

Declare the dimension used, and the type of the image fot supai output.

const int dim= 2;
typedef unsigned char PType;
typedef itk::lmge< PType, dim > |Type;

The AttributeLabelObject class take 3 template parametiees?2 ones from the LabelObject class, and the type of the
attribute associated with each node. Here we have chosembdeddVe then declares the type of the LabelCollection-
Image with the type of the label object.

typedef itk::Attributelabel Cbject< unsigned long, dim double > LOType;
typedef itk::Label Col I ectionl mage< LOType > LCl Type;

We read the input images.

typedef itk::lmageFileReader< |Type > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();
reader->Set Fi | eNane(argv[1]);

Reader Type: : Poi nter reader2 = Reader Type:: New();
reader2->Set Fi | eNane(argv[2]);

And convert the label image to a LabelCollectionimage.
typedef itk::Label | mageToLabel Col | ectionl mageFilter< |Type, LClI Type > |2LType;
[2LType: : Pointer i2l = 12LType:: New();
i 2 ->Set | nput(reader->GetQutput());
i 2| - >Set BackgroundVal ue(atoi (argv[7]));

The next step is made outside the pipeline model, so we calatéyf) now.

. en

9.2 LabelObject and LabelCollectionimage manipulation 20

i 21 ->Updat e();
reader 2- >Updat e() ;

Now we will valuate the attribute. The attribute will be theam of the pixels values in the 2nd image. Note that the
StatisticsLabelObject can give us that value, without hg¢o code that by hand - that's an example.

Lets begin by declaring the iterator for the objects in thag®, and get the object container, to reuse it later.

LCl Type: : Label bj ect Cont ai ner Type: : const _iterator it;
LCl Type: : Pointer |abel Collection = i2l->GetQutput();
const LCl Type: : Label Chj ect Cont ai ner Type & | abel Gbj ect Contai ner = | abel Col | ecti on->Get Label Obj ect Cont ¢

Now iterate over all the objects in the image.

for(it = label CojectContainer.begin(); it !'=label CbjectContainer.end(); it++)
{

The label is there if we need it, but it can also be found atlf@abgct-¢ GetLabel().

const PType & label = it->first;
LOType * |abel Object = it->second;

Init the variables used for the computation.

doubl e nean = 0;
unsi gned long size = 0;

Create the iterator for the lines, and iterate over them

LOType: : Li neCont ai ner Type: : const _iterator lit;
LOType: : Li neCont ai ner Type |ineContainer = | abel Obj ect->CGetLi neCont ai ner();

for(lit = lineContainer.begin(); lit !=lineContainer.end(); lit++)

{
const LCI Type::IndexType & firstldx = lit->Cetlndex();

const unsigned long & length = lit->GetLength();
size += length;
Then iterate over all the pixels in the line, and get the pigdlies in the feature image to compute their mean.

long endldx0 = firstldx[0] + length;

for(LC Type::IndexType idx = firstldx; idx[0]<endldx0; idx[0]++)
{
mean += reader2- >Get Qut put () ->Get Pi xel (idx);
}

}

Complete the compuation of the mean, and set it as attiblile ¥ar the current object.

mean /= size;
| abel Cbj ect->Set Attribute(nean);

9.2 LabelObject and LabelCollectionimage manipulation 21

The LabelObject class provides a Print() method to dispgkaivars.
| abel Chj ect->Print(std::cout);
}

Now that the objects have their attribute, we are free to puiate them with the common filters, or by hand. The
default accessor (AttributeLabelObject) is the wright @ieen using AttributeLabelObject so we don’t have to specify
it. A different one can be used if needed though.

typedef itk::AttributeKeepNbjectsLabel Col | ectionl mageFilter< LCl Type > KeepType;
KeepType: : Poi nter keep = KeepType:: New();

keep->Set I nput (| abel Col l ection);

keep->Set ReverseOrdering(true);

keep- >Set Nunber Of Qbj ect s(atoi (argv[9]));

Prevent the filter to run in place, so the input image is not ifiextl

keep->Set I nPl ace(false);

typedef itk::AttributeCpeninglLabel CollectionlmageFilter< LC Type > QpeningType;
Qpeni ngType: : Poi nter opening = Openi ngType: : New() ;

openi ng->Set | nput (| abel Col I ection);

openi ng- >Set Lanbda(atof (argv[8]));

keep->Set I nPlace(false);

typedef itk::AttributeRelabel Label Col | ectionlmageFilter< LCl Type > Rel abel Type;
Rel abel Type: : Pointer relabel = Rel abel Type:: New();

rel abel ->Set I nput (| abel Col l ection);
keep->Set I nPlace(false);

The attribute values can be put directly in a classic image.

typedef itk::Label CollectionlmageToAttributel mageFilter< LC Type, |Type > A2l Type;
A2l Type: : Pointer a2i = A2l Type:: New();
a2i->Set I nput(|abel Collection);

Or the label collection can be converted back to an label anagto a binary image (not shown here)

typedef itk::Label Collectionl nageToLabel | nageFilter< LCl Type, |Type > L2l Type;
L2l Type:: Pointer |2i = L2 Type:: New();

Finally, write the results

typedef itk::lmgeFileWiter< |Type > WiterType;
WiterType::Pointer witer = WiterType:: New();

writer->Setlnput(a2i->GetCQutput());
writer->SetFileNane(argv[3]);
writer->Update();

witer->Setlnput(|2i->GetQutput());

9.3 Reading attribute values 22

| 2i - >Set | nput (keep->Get Qutput ());
writer->SetFileNane(argv[4]);
writer->Update();

| 2i - >Set | nput (openi ng->CGet Qut put ());
writer->SetFileNane(argv[5]);
writer->Update();

| 2i ->Set I nput (rel abel ->CGet Qutput());
writer->SetFileNanme(argv[6]);
writer->Update();

return 0;

9.3 Reading attribute values

In that example, we will read a binary image, and get sometobates about the obejcts contained in that image. The
source code is available in the fadtribute_values.cxx

First include the classes we’ll use

#include "itkl mageFil eReader. h"

#include "itkShapeLabel Object. h"

#include "itkLabel Col | ectionl mage. h"

#include "itkBi naryl mageToLabel Col | ecti onl mageFilter.h"
#include "itkShapeLabel Col | ectionl mageFilter.h"

int main(int, char * argv[])

{

const int dim= 2;
then declare the type of the inputimage

typedef unsigned char Pixel Type;

typedef itk::lmge< Pixel Type, dim> | mgeType;
read the inputimage

typedef itk::|mageFil eReader< |mageType > Reader Type;

Reader Type: : Poi nter reader = Reader Type:: New();
reader->SetFi | eNane(argv[1]);

define the object type. Here the ShapelLabelObject type isechim order to read some attribute related to the shape
of the objects (by opposition to the content of the objecthwhe StatisticsLabelObejct).

typedef unsigned |ong Label Type;
typedef itk::ShapelLabel Object< Label Type, di m > Label Chject Type;
typedef itk::Label Collectionl mage< Label Object Type > Label Col | ectionType;

9.4 The mask features 23

convert the image in a collection of objects

typedef itk::BinarylmageToLabel Col |l ectionlmgeFilter< |mgeType, Label CollectionType > ConverterType;
ConverterType:: Pointer converter = ConverterType:: New();

converter->SetInput(reader->CGetQutput());

converter->Set Foregr oundVal ue(200);

and valuate the attributes with the dedicated filter: ShapelCollectionimageFilter

typedef itk:: ShapeLabel Col | ectionlnageFilter< Label Col |l ecti onType > ShapeFilter Type;
ShapeFi | ter Type: : Poi nter shape = ShapeFilterType:: New();
shape->Set | nput (converter->Get Qutput());

update the shape filter, so its output will be up to date

shape- >Updat e() ;

then we can read the attribute values we're interesteHimarylmageToLabelCollectionimageFiltproduces consec-
utives labels, so a simple for loop will do the job.

Label Col | ectionType: : Pointer collection = shape->Get Qut put();
for(int label=1; |abel<collection->CetNunber Chbjects(); |abel++)

{
Label Obj ect Type: : Pointer |abel Cbject = collection->CetLabel Obj ect(|abel);

std::cout << label << "\t" << |abel Qbject->CetPhysical Size() << "\t" << |abel Object->CetCentroid()
}

return 0;

}

9.4 The mask features

Theitk::LabelCollectionimageToMaskimageFiltelass let the user mask a part ofign:Imagewith the objects of a
itk::LabelCollectionlmagelt can also crop the image to contain only the masked region.

The source code is available in the fifesk.cxx

First we include the headers of the class we will use, andegsscommand line.

#include "itkl mageFil eReader. h"
#include "itklmageFileWiter.h"
#include "itkSinpleFilterWatcher.h"

#include "itkLabel Object.h"

#include "itkLabel Coll ectionl mage. h"

#include "itkLabel | mageTolLabel Col | ectionl mageFilter.h"
#include "itkLabel Col | ectionl mageToMaskl mageFilter.h"

9.4 The mask features 24

int min(int argc, char * argv[])

{
if(argc '=9)
{
std::cerr << "usage: " << argv[0] << " l|abellmage input output |abel bg neg crop cropBorder" << st
[l std::cerr << " : " << std::endl;
exit(1);
}

the filters are able to work in any dimension. Lets choose 3he@rogram can be tested on 2D and 2D image.
const int dim=3;

declare the input image type
typedef itk::lmge< unsigned char, dim> |nageType;

and the label object type to use. The input image is a labej@nso the type of the label can be the same type than
the pixel type. itk::LabelObjectis chosen, because ordynttask feature is tested here, so we don’t need any attribute.

typedef itk::Label Object< unsigned char, dim> Label Object Type;
typedef itk::Label Collectionlnage< Label Cbject Type > Label Col | ecti onl mageType;

read the label image and the input image to be masked.

typedef itk::lmageFileReader< |mageType > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();
reader->SetFi | eNane(argv[1]);

Reader Type: : Poi nter reader2 = Reader Type:: New();
reader2->Set Fi | eNane(argv[2]);

convert the label image to a label collection image.

typedef itk::Label I mageToLabel Col | ectionl mageFilter< |nmageType, Label Collectionl mageType> |2LType;
[2LType: : Pointer i2l = 12LType:: New();

i 21 ->Set | nput(reader->GetQutput());

i 2| ->Set UseBackground(true);

then mask the image. Two inputs are required (the label ctadle image, and the image to be masked). The label
used to mask the image is passed with$e¢label(method. The background in the output image, where the image
is masked, is passed wigetBackground(JThe user can choose to mask the image outside the label @ihjats the
default behavior), or inside the label object with the cholsdoel, by callingSetNegated()Finally, the image can be
cropped to the masked region, by calli8gtCrop(true)or to a region padded by a border, by calling b8&tCrop()
andSetCropBorder()The crop border defaults to 0, and the image is not croppeatefault.

typedef itk::Label Collectionl nageToMaskl mageFilter< Label Col | ectionl nageType, |nageType > MaskType;
MaskType: : Poi nter mask = MaskType:: New();

mask->Set I nput (12l ->CetQutput());

mask- >Set Feat ur el mage(reader2->Get Qut put ());

mask- >Set Label (atoi (argv[4]));

9.5 A full python example

25

mask- >Set Backgr oundVal ue(atoi (argv[5]));

mask- >Set Negat ed(atoi (argv[6]));

mask->Set Crop(atoi (argv[7]));

MaskType: : Si zeType bor der;

border.Fill(atoi(argv[8]));

mask- >Set CropBor der (border);
itk::SinpleFilterWatcher watcher6(nmask, "filter");

Finally, save the outputimage.

typedef itk::lmageFileWiter< ImageType > WiterType;
WiterType::Pointer witer = WiterType:: New();
writer->Setlnput(mask->GetQutput());
writer->SetFileNane(argv[3]);

writer->Update();

return 0;

9.5 A full python example
In that example, we want to:

o find the nuclei in the first image
¢ find the spots insice the nucleus in the second image

e get the mean value in the nucleus, in the zone of each spot.

"f\- »
F e

-y

(a) Nucleus

Figure 4: The input images.

(b) Spots

9.5 A full python example 26

The source code is available in example.py.

Lets begin with the usuamnports

inport itk, sys
itk.auto_progress()

Then declare the type we will use, asist.

Dimension = 2
Pi xel Type = itk.UC
| mgeType = itk.lnmage[Pixel Type, Dinension]

itk.F
itk.lmage[DistancePixel Type, Dinension]

Di st ancePi xel Type
Di st ancel mageType

RGBPi xel Type
RGBI mageType

i tk. RGBPi xel [Pi xel Type]
itk.lmage[RGBPixel Type, Dimension]

Label Cbj ect Type = itk. StatisticsLabel Object[itk.UL, Dinension]
Label Col | ecti onl mageType = itk. Label Collectionl mage[Label Obj ect Type]

read the image of the nucleus
nucl ei = itk.lmgeFi|eReader[|nmageType]. New(Fi | eNane="i mages/ noyaux. png")

perform a simple binarization. Note that the Otsu filter dnesuse the same convention as usual: the white part is
outside.

otsu = itk.tsuThreshol dl mageFi | ter[l mgeType, |nmageType].New nuclei,
Qut si deVal ue=255, I nsi deVal ue=0)

The nuclei are not separated. We split them with a watershed.

maurer = itk.Si gnedMaurerDi st anceMapl nageFi | ter[I nageType, Distancel mageType]. New(ot su)

wat er shed = itk. Morphol ogi cal Wt er shedl nageFi | ter[Di st ancel mageType, | nmageType]. New(maurer,
Level =60, Mar kWt er shedLi ne=Fal se)

mask = itk. Maskl mageFilter[lmageType, |mageType, |nmageType].New(watershed, otsu)

And now switch to the label collection representation

| abel = itk.Label | mageTolLabel Col | ectionl nageFilter[|nageType, Label Collectionl mageType]
. New(nask)

compute the attribute values

stats = itk.StatisticsLabel CollectionlmageFilter[Label CollectionlmgeType, |mageType]
. New(| abel, nuclei)

drop the objects too small to be a nucleus, and the ones orotherh

9.5 A full python example 27

Figure 5: The segmented nuclei. The too small objects andribe on the border have been excluded.

size = itk. ShapeQpeni ngLabel Col | ectionl nageFi | ter[Label Col | ecti onl nageType] . New(stat s,
Attribute="Size', Lanbda=100)

border = itk. ShapeQpeni ngLabel Col | ectionl mageFilter[Label Col | ectionl mageType]. New(si ze,
Attribute="SizeOnBorder', Lanbda=10, ReverseOrdering=True)

Reoder the labels. The objects with the highest mean arerghefies.

rel abel = itk.StatisticsRel abel Label Col | ectionl mageFilter[Label Collectionl mageType]
. New(border, Attribute="Mean')

for visual validation:

| abel Nucl ei = itk. Label Col |l ectionl mageToLabel | mageFi | ter[Label Col | ecti onl mageType,
I mgeType] . New(r el abel)

overlay = itk.Label Overlayl nageFilter[lmageType, |nageType, RGBI mageType]. New(nucl ei,
| abel Nucl ei, UseBackground=Tr ue)

itk.wite(overlay, "nuclei-overlay.png")

Now, the spots:
spots = itk.lnageFi| eReader[| nageType]. New Fi | eNane="i nages/ spots. png")
Mask the spot image to keep only the nucleus zone. The relseaffrtage is cropped, excepted a border of 2 pixels

maskSpots = itk. Label Col | ectionl mageToMaskl mageFilter. LI 21 UC2. New(rel abel, spots, Label =1,
Crop=True, CropBorder=2)

A simple thresholding:

28

th = itk.BinaryThreshol dl mageFilter[lmageType, |mageType]. New maskSpots, Lower Threshol d=110)

Now swith to the label collection representation, and cotaploe attribute values. This time, the input image is not a
label image, but a binary one.

sl abel = itk.BinarylmageTolLabel Col | ectionlnageFilter[lnageType, Label Collectionl mageType]
. New(th)

sstats = itk.StatisticsLabel CollectionlnmageFilter[Label CollectionlnageType, |nmageType]
. New(sl abel, nuclei)

we know there are for spots in the nubleus, so keep the 4 lHiggess. The other attribute are also usable - we may
have chosen to keep the 4 brightest spots for example.

skeep = itk.ShapeKeepNChj ect sLabel Col | ecti onl mageFi | ter [Label Col | ecti onl mageType] . New(
sstats, Attribute="Size', NunberOf Cbjects=4)

Reoder the labels. The bigger objects first.

srelabel = itk.StatisticsRel abel Label Col | ectionlmageFilter[Label Collectionl mageType]. New(
skeep, Attribute='Size")

Finally, display the values we are interested in:

e the nucleus number,
e the spot position,

e the mean value in the nucleus in the spot zone.

nyn non n

print "nuclei", "x", "y", "nean"

for nl in range(l, relabel.GetCQutput().GetNunber Of Objects()+1):
maskSpot s. Set Label (nl)
srel abel . Updat eLar gest Possi bl eRegi on()
| abeCol | ection = srel abel . Get Qut put ()

for | in range(l, |abeCollection.GetNunber O Cbjects()+1):
o = | abeCol | ection. Get Label Chj ect (1)
print nl, lo.CGetCentroid()[0], lo.GetCentroid()[1], Io0.CetMean()

10 Threading support

When possible, the filters provided with that contributicawvé been multithreaded. Some of them however, are
not (easily) threadable (theeepNODbjectandRelabelfilters), are shouldn’t get any performance improvement in a
threaded version (th®@penindfilters).

TheBinarylmageToLabelCollectionimageFiltelass is a slight modification of the Richard Beai@snnectedCom-
ponentimageFilterand thus, has not been threaded. It should however be possilmcrease its performance that
way.

The classical thread architecture is used when the inpugéismanmage the image is splitted in several regions (one
per thread), and each thread work on its own region.

29

nucleus

X

y

mean

=Y

WWWWNNNNRE R PR

117.925925926
154.25
107.666666667
95.2380952381
417.631578947
431.277777778
390.117647059
396.8
251.148148148
189.333333333
293.72
239.888888889

146.111111111
87.4166666667
155.125
78.2857142857
158.736842105
177.388888889
207.588235294
113.666666667
358.814814815
407.888888889
454.8
411.111111111

188.185185185
126.416666667
122.0
121.0

132.894736842
131.222222222
96.8235294118

113.2
105.037037037
111.074074074

95.48

135.222222222

Table 1: Output of the python example.

Because theabelCollectionimagémage is not an array of pixels, it can’t be splitted that wagtead, several threads
are created, and try to take an object in the collection. df/thet one, they process that object individually, and try
to get another one when the object is processed. If no obgecbe get, the thread ends.FAstMutexLocks used to
ensure that only one thread take an object at a time.

For the developer, the usage of the threading support is Fe&giesimple, by subclassindgabelCollectionimageFilter

or InPlaceLabelCollectionimageFilteand implementing the methadttual void ThreadedGenerateData(LabelOb-
jectType * labelObject in the new class. This method only has to process the labet®passed in parameter. All the
threading code and mutex lock managementis already impierdeThe mutex lock remain accessible if the subclass
need to use it, as tha_LabelObjectContainerLodkar.

11 In place filtering

All the filters which are taking dabelCollectionimageas input, and are producind.abelCollectionlmagas output,
are implemented as a subclasdrd®laceLabelCollectionlmageFilteand thus are running in place by default.

The use can modify this behavior with tisetinPlace(bool,)InPlaceOn() andInPlaceOff()methods, as with the
usualinPlacelmageFilter

To use that feature, a developer only have to subdfeBgcelLabelCollectionimageFilteand implement theirtual
void ThreadedGenerateData(LabelObjectType * labelObje get easy thread suppdttor thevirtual void Gen-
erateData()if the filter is not threadable. In that last case, the onlygmao manipulate is the one get with the
GetOutput()method, which is the input image if the filter runs in placeaa@opy of the input image if the filter is not
running in place.

12 Wrappers support

All the classes provided with that article, excepted the tingemeric ones made to help the developer to implement
some new features, can be used with WrapITK, and have begndated with python.

5see the previous section

30

13 Known bugs and future work

To fit the ITK style, some iterators should be implementedd@ble to iterate over all the

e Objects,
e lines,

e Or pixels
of an image, starting from

e animage,
e an object,

e oraline.

Doing that require a good knowledge of the iterator desigmy Aelp on that point is welcome.

It may be useful to implement the most commonly used operkiegp N objects and relabel transforms in a more
efficient way, by using aAttributeLabelObjecinstead of &ShapelLabelObjedr a StatisticsLabelObject

TheBinarylmageToLabelCollectionlmageFiltelass should be threaded to get the best of that filter on pnattessors
systems.

The converters from/to image are provided, but it may beul¢ethave the converters from/to other objects represen-
tations:

e spatial objects,
e meshs,

e structuring elements.

Finally, all the binary and label filters should be implermezhas a subclass bfPlacelmageFilter

14 Conclusion

ITK is currently lacking a good way to manipulate the binabjexts. With that contribution | hope to have mostly
filled that lack.

15 Acknowledgments

| thank Richard Beare for his suggestion to use the run leagtioding to represent the binary objects, and Julien
Jomier for his help for the choice twtuse thdtk::SpatialObjectclass as base class of title:LabelObejctclass.

| thank Dr Pierre Adenot and MIMA2 confocal facilitiebt{ p: // m ma2. j ouy. i nra. fr) for providing the 3D test
image. | thank Dr Maria Ballester for providing the image digethe python example.

References

[1] L. Ibanez and W. Schroeder. The ITK Software Guide Kitware, Inc. ISBN 1-930934-10-6,
http://www.itk.org/ItkSoftwareGuide.pdf, 2003.

http://mima2.jouy.inra.fr

	Introduction
	Definitions
	Label
	Labeled image
	Binary image
	Attribute

	Existing classes and naming convention in ITK
	Data representation
	itk::LabelCollectionImage
	itk::LabelObject and its specializations
	itk::ShapeLabelObject attributes
	itk::StatisticsLabelObject attributes

	itk::LabelObjectLine

	General view of the usage
	Generating the itk::LabelCollectionImage
	Valuating the attributes
	Manipulating the itk::LabelCollectionImage
	Generating an itk::Image from the itk::LabelCollectionImage

	Prebuilt mini-pipeline filters
	Binary filters
	Label filters

	Binary specialization of mathematical morphology filters
	Computation details
	Binary image moments
	Roundness
	Pixel's neighborhood

	Usage examples
	Prebuilt pipelines
	Binary shape opening
	Statistics relabel
	Label shape keep N obejcts
	Binary fill holes

	LabelObject and LabelCollectionImage manipulation
	AttributeLabelObject

	Reading attribute values
	The mask features
	A full python example

	Threading support
	In place filtering
	Wrappers support
	Known bugs and future work
	Conclusion
	Acknowledgments

