Labeled object representation and
manipulation with ITK

Gaétan Lehmann?

August 16, 2007

1INRA, UMR 1198; ENVA; CNRS, FRE 2857, Biologie du Développent et Reproduction, Jouy en
Josas, F-78350, France.

Abstract

Richard Beare has recently introduced a new filter to effitydabelize the connected component
with ITK, and has also proposed to use the run-length engoalsed in that filter to implement some
of the most useful binary mathematical morphology opegattire opening by attribute. Following that
idea, and after have searched a way to use the ITK's spafiettstfor this task, a new set of classes
have been developed to represent and manipulate the labedgds and the objects within them in ITK.
Those new classes have been used to implement severaldabelges manipulation based on object
attributes, as well as the binary specialization of someharaatical morphology filter already included
in ITK, and not related to the attribute of the objects. Whthge last filters, this contribution comes with
49 new classes, and should greatly enhance the binary maticehmorphology in ITK.

All the source codes are provided, as well as a full set o$taistl several usage examples of the new

classes.
Contents
1 Introduction 2
2 Definitions 3
2.1 Label 3
2.2 Labeledimage e 3
2.3 Binaryimage. e e 3
24 Attribute. . .. e 3
3 Existing classes and naming convention in ITK 3
4 Data representation 4
4.1 itk::LabelCollectionlmage. e 4
4.2 itk::LabelObject and its specializations, 4
itk::ShapelLabelObject attributes e 5
itk::StatisticsLabelObject attributes. 6

4.3 itk:LabelObjectline 6

5 General view of the usage 7
5.1 Generating the itk::LabelCollectionlmage., 7
5.2 Valuating the attributes 7
5.3 Manipulating the itk::LabelCollectionlmage. 7
5.4 Generating an itk::Image from the itk::LabelColleatimage 8

6 Prebuilt mini-pipeline filters 8
6.1 Binaryfilters e 8
6.2 Labelfilters. L 9

7 Binary specialization of mathematical morphology filters 9

8 Usage examples 9
8.1 Prebuilt pipelines. e 9

Binary shape opening e 9
Statistics relabel 10
Label shape keep Nobejcts. e 11
Binary fillholes e 12
8.2 LabelObject and LabelCollectionlmage manipulation 13
AttributeLabelObject. e 13
8.3 Reading attribute values. 17

9 Threading support 18

10 In place filtering 19

11 Wrappers support 19

12 Known bugs and future work 19

13 Conclusion 20

14 Acknowledgments 20

1 Introduction

Identifying the objects in an image is a very common taskeroftealized by producing an image of the

same size with a single pixel value per object. This imagelled a labeled image. There are several way
to create this image. It can be done by searching the cortheomponents in a binary image, it can be

produced directly by some algorithms, like the watershaddform, it can even be simply done by hand,
etc.

2 Definitions

In that article, some terms will be cited very frequently. illivy to define them, in the context of the image
analysis.

2.1 Label

A label is an identifier of something with the same caradiegsn the image. Those caracteristics can be
whatever you want, for example, the range of pixel valuessdime object in sense of connected component,
etc. A label can be represented by anything and only need tanlipie in the image. It doesn’t even
require to be ordered. In practice, we choose to use theraltagmber types, for several reasons: they are
commonly used in image analysis, they efficiently reprensiam label in memory, and its easy to find the
next label by adding 1.

2.2 Labeled image

A label image is an image which contains several labeledgix@ften, the labels are representing some
objects placed on a background, and so the label image maypesgicular label for the background.

2.3 Binary image

A binary image is an image with two labels: a foreground ladoedl a background label. In practice, the
binary images are using a pixel type able to store more thasettwo values. The foreground is thus defined
with a particular label, and the other label in the image amsilered as the background. A side effect of
that is that a labeled image can be considered as a binarnejmad so, it let us manipulate a single object
in a labeled image.

2.4 Attribute

An attribute is a value of any type associated with a labetait be for example the size of an object, the
mean of its pixels intensities, etc.

3 Existing classes and naming convention in ITK

In ITK, the labeled and the binary images are implemented simpleitk::Image The pixel types used
are most of the time integral, signed or unsigned, but mayflother types. Several definitions of a binary
image or used in ITK. Depending of the class which implemert binary image can be:

e All the pixels with a given value are in the foreground. Thhest are in the background. That's the
definition proposed in that article.

¢ All the pixels with a given value are in the background. Theeos$ are in the foreground.

e All the pixels greater than a value (zero by default, or theamef the maximum value in the im-
age and the minimum value in the image) are in the foregrodrte other are in the background.

This definition is often used in the levelset framework, veharborder can be defined at a subpixel
resolution.

All those definitions should be uniformized to enhance ugpegence with ITK. In that article (and all the
others from the same author), the first one is the only one.used

The filter which are mainpulating binary images are ofterfipeel with the word "Binary”, to differenciate
the grayscale version which don’t have a prefix. It seem to dpaite good practice which have been kept in
that article.

The filter dedicated to the manipulation of labeled image e word "Label” somewhere in there name.
Again, it seem to be a good practice which have been kept trattiale.

4 Data representation

The labeled images are often used the represent the codrmetgonents of an image. In this contribution,
another representation has been chosen.

The objects contained in the image, as connected comparantye efficiently stored in memory as a set
of lines, using the run-length encoding: a starting poimtefach line, and the length of the line on a given
dimension (by convention, the dimension 0).

The image is a collection of those objects, which also storeesvalues of the image, like its size, its
spacing, etc.

4.1 itk::LabelCollectionimage

Theitk::LabelCollectionimageclass is in charge of managing the collection of labeledaibjef the image,
as well as storing the metadata associated with the imageHi spacing, the physical position - all the
metadata found ink::Image

Theitk::LabelCollectionlmageorovide a part of the API of thik::Image class, and so can be manipulated
as an imagein many cases. The performance can be very different howbeeause of the very different
data structure used.

Theitk::LabelCollectionimagas a templated class, which take a single parameter: thesfylpbeled object
stored by that class. The dimension of the image is took fiuatatbeled objectlass, and thus don't need
to be defined as template parameter of that class. The pield/the image also comes from tlabeled
objectclass.

4.2 itk::LabelObject and its specializations

Theitk::LabelObjectclass represent the label obejcts. It has two main features:

e It manage the set pixels which compose the object. The paxelstored using the run-length encod-
ing.

e |t has a label.

Lit doesn’t support the itk::Image iterators though

4.2 itk::LabelObject and its specializations 5

No attribute are stored in this class, which can thus be sedmeabase class for the objects with attributes,
or which can be used when no attributes are required.

Theitk::LabelObjectclass is templated and takes to required template parasneter

¢ the type of the label,

e the dimension of the image.

Several subclasses are provided with that contributiorgoier the most common usages of the labeled
objects manipulation:

e itk::AttributeLabelObjectis able to store a generic attribute. It is generic in the sehat its type is
given in template parameter.

e itk::ShapeLabelObjectontains numerous attribute related to the shape of théeldlmbject. Com-
puting the values of those attributes does not require adgawage.

o itk::StatisticsLabelObjectontains numerous statistics about the grey values of areeahage in the
same place than the labeled object. Computing the valudsoeétattributesloesrequire a feature
image.

The classe#tk::ShapelLabelObjecanditk::StatisticsLabelObjechave been created to reduce the number
of filters made to manipulate the attributes, and to make tmeputation of all the set of attributes much
efficient. In the early stage of development, all the attesuvere managed as AdtributeLabelObjegtand

a set of 8 classes made to manipulate a single attribute wevapd, leading to a huge number of classes.

The scalar values of the attributes of titke:ShapeLabelObjecand theitk::StatisticsLabelObjectlasses
are often given both in pixel and in physical units, in ordebe able to give some parameter independant
of the image spacing.

Both itk::ShapelLabelObjectand itk::StatisticsLabelObjectare templated classes. They take the
same template parameters than fle:LabelObject class. The 2 first template parameters of the
itk::AttributeLabelObjectclass or the same than thtk::LabelObjectclass. The third one is the attribute

type.

itk::ShapeLabelObject attributes

e Sizeis the size of the object in number of pixels. Its typeisigned long

e PhysicalSizds the size of the object in physical unit. It is equal to Bigemultiplicated by the
physical pixel size. Its type idouble

e Centroidis the position of the center of the shape in physical coatei. It is not constrained to be
in the object, and thus can be outside if the object is noteanits type isPointj double, ImageDi-
mension ¢,

e Regionis the bounding box of the object given in the pixel coordesatThe physical coordinate can
easily be computed from it. Its type limageRegionj ImageDimension ¢,

4.3

itk::LabelObjectLine 6

RegionElongations the ratio of the longest physical size of the region on oimeedsion and its
smallest physical size. This descriptor is not robust, anghirticular is sensitive to rotation. Its type
is double

SizeRegionRatis the ratio of the size of the object region (the bounding)tzmd the real size of the
object. Its type iglouble

SizeOnBordeiis the number of pixels in the objects which are on the bordahe image. This
attribute is particulary useful to remove the objects whach touching too much the border. Its type
is unsigned long

FeretDiametelis the diameter in physical units of the sphere which inclaitithe object. The feret di-
ameter is computed by default only if the dimension of thegeis 2, because of its high computation
cost for higher dimensions. Its typedsuble

itk::StatisticsLabelObject attributes

4.3

Minimumis the minimum value in the feature image for the object. Jlpetis the feature image pixel
type.

MinimumIndexs the index position in the image where the first minimum veasfl. Its type ildex;
ImageDimension .¢,

Maximumis the maximum value in the feature image for the object.yitg iis the feature image pixel
type.

MaximumIndexs the index position in the image where the first maximum wamdé. Its type
isindexj ImageDimension. ¢,

Meanis the mean of the pixel values in the object. Its typdasble

Sumis the sum of all the pixel values in the objects. Its typdasble

Sigmais the standard deviation of the pixels values in the objdtdsype isdouble
Varianceis the variance of the pixels values in the objects. Its tgmouble
Medianis the median of the pixels values in the obejct. Its typaoigble
CenterOfGravityis the center of gravity of the object. It typeRointj double ¢,
Kurtosisis the kurtosis of the pixel values in the objects. Its typdasble

Skewnest the skewness of the pixel values in the objects. Its typeuble

itk::LabelObjectLine

itk::LabelObjectLineis the object used to store the position and the size of aesiimg.

5 General view of the usage

5.1 Generating the itk::LabelCollectionimage

Theitk::LabelCollectionImageclass provide some methods to fill the image "by hand”, like tisualSet-
Pixel() method. However, the most efficient way is to convert a labéteage or a binary image stored in
anitk::Image to aitk::LabelCollectionimage by usingitk::BinarylmageToLabelCollectionimageFiltesr
itk::LabellmageToLabelCollectionimageFilter

5.2 Valuating the attributes

The label objects produced by those filters have no attribatee set, and thus, the attributes must be
valuated. Some filters are provided for the most common used:o

e itk::ShapelLabelCollectionimageFilteo fill the attributes of thetk::ShapelLabelObjest

¢ anditk::ShapeLabelCollectionimageFilteo fill the attributes of thetk::StatisticsLabelObjest

For theitk::AttributeLabelObjectclass or other classes, the user must set the value by hjrfaretikample
by implementing a subclass ibk::InPlaceLabelCollectionimageFilter

5.3 Manipulating the itk::LabelCollectionimage

Once created and, optionally, valuated, several filters gm@vided to manipulate the
itk::LabelCollectionimage

e An opening can be performed with tli@peningLabelCollectionimageFilteslasses. Those classes
will remove all the objects with an attribute value lower aegter than a given value. Because we
often can use some criteria which have not been used durnggiimentation procedure, like the size
of the object, the mean value of its pixels, etc., the attelmpening is often a very efficient way to
enhance a segmentation. For example, after a thresholfiengrayscale image, the objects too small
or too beg to be of interest can be removed that way.

e A fixed number of objects can be kept, with tkeepNObjectsLabelCollectionImageFiltelasses.
They are chosen according to the value of their attributee 0$er can choose to keep the ones with
the highest, or with the lowest attribute values.

e The objects can be relabel, with tiRelabelLabelCollectionimageFiltecrlasses. The order of the
label is dependant of the value of the attribute. Again, ter gan choose to have the objects with the
highest attribute value in the first labels, or to have thectsj with the lowest attribute values in the
first labels.

It can also be useful to simply get the attribute values aasat with the objects. In that case, the classes
provided in with that article can be used in placdtkfLabelStatisticsimageFilteror to get some data about
the shape or the position of the object.

Finally, it has been chosen to develop a specific filter formitwephological reconstruction. It would have
been possible to implement the reconstruction with the mostmon case (build the object collection,

5.4 Generating an itk::Image from the itk::LabelCollectionimage 8

valuate the attributes filter the object, and rebuild thege)abut in order to make it compatible with the
ShapelabelObjecnd StatisticsLabelObjecthe reconstruction filter filters the collection directlyithout
setting an attribute in the objects

5.4 Generating an itk::Image from the itk::LabelCollectionimage

Once the manipulation of the objects is done, it can be usefyd back to a more classik::Image. Several
classes are provided to do that:

e Theitk::LabelCollectionimageToLabellmageFiltetass simply convert dk::LabelCollectionimage
to a labeled image stored int&::Image.

e The itk::LabelCollectionimageToBinarylmageFiltgput all the objects in the foreground of a bi-
nary image stored in a itk::Image. It is intended to be useth wn image produced by the
itk::BinarylmageToLabelCollectionlmageFilterThe background values of the original image can
also be restored by this filter.

e Theitk::LabelCollectionimageToMaskimageFiltetass can be used to mask an image with the ob-
jects of theitk::LabelCollectionimage

e Finally, itk::LabelCollectionlmageToAttributelmageFilt@roduce aritk::Image with the value of the
attribute of the objects of thigk::LabelCollectionimage This filter is mostly useful to have a global
view of the attribute values in the image.

6 Prebuilt mini-pipeline filters

The general view of the previous section show a very commaontwase those classes. To make easier to
use, some prebuilt classes have been made, to perform thpimatine:

e creation of thetk::LabelCollectionimagdrom anitk::Image
e valuation of the attribute(s) of the objects,
e filtering of theitk::LabelCollectionimage

e creation of aritk::Imagefrom the filtereditk::LabelCollectionimage

with a specific attribute.

Because the objects are often get from a labeled image ordrbimary image, those filters have been made
for binary, and labeled images.

6.1 Binary filters

o itk::BinaryAttributeKeepNObjectsimageFilter

2'm not really pleased with that design though, and I'thimkiabout reimplementing it using the generic attributesvdtld
have no impact on the binary filters API.

6.2 Label filters

o itk::BinaryAttributeOpeninglmageFilter

e itk::BinaryShapeKeepNObjectsimageFilter

e itk::BinaryShapeOpeningimageFilter

e itk::BinaryStatisticsKeepNObjectsimageFilter

e itk::BinaryStatisticsOpeninglmageFilter

6.2 Label filters

o itk::LabelAttributeKeepNObjectsimageFilter
e itk::LabelAttributeOpeninglmageFilter

e itk::LabelShapeKeepNObjectsimageFilter

e itk::LabelShapeOpeninglmageFilter

o itk::LabelStatisticsKkeepNObjectsimageFilter
e itk::LabelStatisticsOpeninglmageFilter

e itk::ShapeRelabellmageFilter

e itk::StatisticsRelabellmageFilter

7 Binary specialization of mathematical morphology filters

e itk::BinaryClosingByReconstructionimageFilter
e itk::BinaryFillholelmageFilter

e itk::BinaryGrindPeaklmageFilter

e itk::BinaryOpeningByReconstructionimageFilter
e itk::BinaryReconstructionByDilationimageFilter

e itk::BinaryReconstructionByErosionimageFilter

8 Usage examples

8.1 Prebuilt pipelines
Binary shape opening

The source code is available in the filmary_shape_opening.cxx

8.1 Prebuilt pipelines 10

#include "itkl mageFil eReader. h"
#include "itklmageFileWiter.h"
#include "itkSinpl eFilterWatcher.h"

#incl ude "itkBi naryShapeQpeni ngl mageFilter.h"

int min(int argc, char * argv[])

{
if(argc '=9)
{
std::cerr << "usage: " << argv[0] << " input output foreground background |ambda reverseQrdering c
[l std::cerr << " : " << std::endl;
exit(l);
}

const int dim=3;
typedef itk::lmage< unsigned char, dim> |Type;

typedef itk::lmageFileReader< | Type > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();
reader->SetFi | eNane(argv[1]);

typedef itk::BinaryShapeQpeni ngl mageFilter< | Type > Bi naryQpeni ngType;
Bi nar yQpeni ngType: : Poi nter openi ng = Bi naryQpeni ngType: : New() ;

openi ng- >Set | nput (reader->Get Qutput ());

openi ng- >Set For egr oundVal ue(atoi (argv[3]));

openi ng- >Set Backgr oundVal ue(atoi (argv[4]));

openi ng- >Set Lanbda(atof (argv[5]));

openi ng- >Set Rever seOrdering(atoi(argv[6]));

openi ng- >Set Ful | yConnected(atoi (argv[7]));

openi ng->Set Attribute(argv[8]);

itk::SinpleFilterWtcher watcher(opening, "filter");

typedef itk::lmageFileWiter< | Type > WiterType;
WiterType::Pointer witer = WiterType:: New();
writer->Setlnput(opening->GetQutput());
writer->SetFileNane(argv[2]);

writer->Update();

return 0;

Statistics relabel

The source code is available in the fi@atistics_relabel.cxx

#include "itkl mageFil eReader. h"
#include "itklmageFileWiter.h"
#include "itkSinpl eFilterWatcher.h"

8.1 Prebuilt pipelines 11

#include "itkStatisticsRel abel I nageFilter.h"

int main(int argc, char * argv[])

{
if(argc 1=8)
{
std::cerr << "usage: " << argv[0] << " input input output background useBg reverseOrdering attribut
Il std::cerr << " : " << std::endl;
exit(l);
}

const int dim= 3;
typedef itk::lmge< unsigned char, dim> |Type;

typedef itk::lmageFileReader< |Type > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();
reader->Set Fi | eNane(argv[1]);

Reader Type: : Poi nter reader2 = Reader Type:: New();
reader2->Set Fi | eNane(argv[2]);

typedef itk::StatisticsRel abellmageFilter< |Type, |Type > Rel abel Type;
Rel abel Type: : Pointer relabel = Rel abel Type:: New();

rel abel ->Set | nput (reader->CGetQutput());

rel abel - >Set Feat ur el mage(reader2->Get Qutput());

rel abel - >Set Backgr oundVal ue(atoi (argv[4]));

rel abel - >Set UseBackground(atoi (argv[5]));

rel abel - >Set Rever seOrdering(atoi(argv[6]));

rel abel ->Set Attribute(argv[7]);

itk::SinpleFilterWatcher watcher(relabel, "filter");

typedef itk::lmgeFileWiter< |Type > WiterType;
WiterType::Pointer witer = WiterType::New();
writer->Setlnput(relabel->GetCQutput());
writer->SetFileNanme(argv[3]);

writer->Update();

return 0;

Label shape keep N obejcts

The source code is available in the fiddbel_shape keep.n_objects.cxx

#include "itkl mageFil eReader. h"
#include "itklmageFileWiter.h"
#include "itkSinpleFilterWatcher.h"

#include "itkLabel ShapeKeepNj ect sl mageFilter. h"

8.1 Prebuilt pipelines 12

int min(int argc, char * argv[])

{
if(argc '=7)
{
std::cerr << "usage: " << argv[0] << " input output background nb reverseOrdering attribute" << st
[l std::cerr << " " << std::endl;
exit(1);
}

const int dim= 3
typedef itk::lmage< unsigned char, dim> |Type;

typedef itk::lmgeFil eReader< | Type > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();
reader->SetFi | eNane(argv[1]);

typedef itk::Label ShapeKeepNbj ect sl nmageFilter< |Type > Label Openi ngType;
Label Openi ngType: : Poi nter opening = Label Openi ngType: : New();

openi ng->Set | nput (reader->Cet Qut put());

openi ng- >Set Backgr oundVal ue(atoi (argv[3]));

openi ng- >Set Nunber O Cbj ect s(atoi (argv[4]));

openi ng- >Set Rever seOrdering(atoi (argv[5]));

openi ng->Set Attribute(argv[6]);

itk::SinpleFilterWatcher watcher(opening, "filter");

P

typedef itk::lmageFileWiter< |Type > WiterType;
WiterType::Pointer witer = WiterType::New();
writer->Setlnput(opening->GetCQutput());
writer->SetFileNanme(argv[2]);

writer->Update();

return 0;

Binary fill holes

The source code is available in the filmary_fillhole.cxx

#include "itkl mageFil eReader. h"
#include "itklmageFileWiter.h"
#include "itkConmmand. h"

#include "itkSinpl eFilterWatcher.h"

#include "itkLabel Object.h"

#include "itkLabel Col | ectionl mage. h"
#include "itkBinaryFillhol el mageFilter.h"

int min(int argc, char * argv[])

{

if(argc !'=5)

8.2 LabelObject and LabelCollectionimage manipulation 13

{

std::cerr << "usage: " << argv[0] << " input output conn fg" << std::endl;
[l std::cerr << " " << std::endl;

exit(l);

}

const int dim= 2;
typedef itk::lmage< unsigned char, dim> |Type;

typedef itk::lmageFil eReader< | Type > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();
reader->SetFi | eNane(argv[1]);

reader - >Updat e() ;

typedef itk::BinaryFillholelmageFilter< | Type > |2LType;
[2LType: : Poi nter reconstruction = |2LType:: New();
reconstruction->Set|nput(reader->CGetQutput());
reconstruction->Set Ful | yConnected(atoi(argv[3]));
reconst ruction- >Set For egroundVal ue(atoi(argv[4]));
/1 reconstruction->Set BackgroundVal ue(atoi(argv[5]));
itk::SinpleFilterWtcher watcher(reconstruction, "filter");

typedef itk::lmgeFileWiter< |Type > WiterType;
WiterType::Pointer witer = WiterType:: New();

writer->Setlnput(reconstruction->CetCQutput());
writer->SetFileNane(argv[2]);

writer->Update();

return 0;

8.2 LabelObject and LabelCollectionlmage manipulation

AttributeLabelObject

The AttributeLabelObjectet the user specify the type of the attribute he wants to aisé thus is the good choice to
implement a new attribute.

The source code is available in the fijeneric_attribute.cxx

First we include the headers of the class we will use, andegsscommand line.

#include "itkl mageFil eReader. h"
#include "itklmageFileWiter.h"

#include "itkAttributelLabel Qbject.h”
#include "itkLabel Coll ectionl mage. h"

#include "itkLabel | mageTolLabel Col | ectionl mageFilter.h"
#include "itkAttribut eKeepNObj ect sLabel Col | ectionl mageFilter.h"

#include "itkAttributeQpeninglLabel Col | ectionl mageFilter.h"
#include "itkAttributeRel abel Label Col | ectionl mageFilter.h"

8.2 LabelObject and LabelCollectionimage manipulation 14

#include "itkLabel Col | ectionl mageToAttri butel mageFilter.h"
#include "itkLabel Col | ectionl mageTolLabel | nageFilter.h"

int main(int argc, char * argv[])

{
if(argc !=10)
{
std::cerr << "usage: " << argv[0] << " label input attr keep open relabel bg lanbda nb" << std:
Il std::cerr << " : " << std::endl;
exit(1);
}

Declare the dimension used, and the type of the image fot supadi output.

const int dim= 2;
typedef unsigned char PType;
typedef itk::lmge< PType, dim > |Type;

The AttributeLabelObject class take 3 template parametiees? ones from the LabelObject class, and the type of the
attribute associated with each node. Here we have chosembdeddVe then declares the type of the LabelCollection-
Image with the type of the label object.

typedef itk::Attributelabel Cbject< unsigned long, dim double > LOType;
typedef itk::Label Col I ectionl mage< LOType > LCl Type;

We read the input images.

typedef itk::lmgeFileReader< |Type > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();
reader->SetFi | eNane(argv[1]);

Reader Type: : Poi nter reader2 = Reader Type:: New();
reader2->Set Fi | eNane(argv[2]);

And convert the label image to a LabelCollectionimage.

typedef itk::Label I mageToLabel Col | ectionl nageFilter< |Type, LC Type > |2LType;
[2LType: : Pointer i2l = 12LType:: New();

i 21 ->Set I nput(reader->GetQutput());

i 21 - >Set BackgroundVal ue(atoi(argv[7]));

The next step is made outside the pipeline model, so we calatéyf) now.

i 2| ->Update();
reader 2- >Updat e() ;

Now we will valuate the attribute. The attribute will be theam of the pixels values in the 2nd image. Note that the
StatisticsLabelObject can give us that value, without hg¥o code that by hand - that's an example.

Lets begin by declaring the iterator for the objects in thag®, and get the object container, to reuse it later.

. enc

8.2 LabelObject and LabelCollectionimage manipulation 15

LCl Type: : Label Ohj ect Cont ai ner Type: : const _iterator it;
LCl Type: : Poi nter |abel Collection = i2l->GetQutput();
const LCl Type:: Label Chj ect Cont ai ner Type & | abel Gbj ect Contai ner = | abel Col | ecti on->Get Label Obj ect Cont ¢

Now iterate over all the objects in the image.

for(it = label CojectContainer.begin(); it !'=label CbjectContainer.end(); it++)
{

The label is there if we need it, but it can also be found atlf@abgct-¢ GetLabel().

const PType & label = it->first;
LOType * |abel Object = it->second;

Init the variables used for the computation.

doubl e nean = 0;
unsi gned long size = 0;

Create the iterator for the lines, and iterate over them

LOType: : Li neCont ai ner Type: : const iterator lit;
LOType: : Li neCont ai ner Type |ineContainer = | abel Obj ect->CGetLi neContai ner();

for(lit = lineContainer.begin(); lit !=lineContainer.end(); lit++)

{
const LCl Type::IndexType & firstldx = lit->Cetlndex();

const unsigned long & length = lit->GetLength();
size += length;

Then iterate over all the pixels in the line, and get the puadlies in the feature image to compute their mean.
long endldx0 = firstldx[0] + length;

for(LC Type::IndexType idx = firstldx; idx[0]<endldx0; idx[O0]++)

{
mean += reader 2->CGet Qut put () ->Cet Pi xel (idx);

}
}

Complete the compuation of the mean, and set it as attiblite ¥@r the current object.

mean /= size,
| abel Chj ect->Set Attribute(mean);

The LabelObject class provides a Print() method to dispgkaivars.
| abel Chj ect->Print(std::cout);

}

8.2 LabelObject and LabelCollectionimage manipulation 16

Now that the objects have their attribute, we are free to maate them with the common filters, or by hand. The
default accessor (AttributeLabelObject) is the wright aieen using AttributeLabelObject so we don’t have to specify
it. A different one can be used if needed though.

typedef itk::AttributeKeepNbjectsLabel Col | ectionl mageFilter< LCl Type > KeepType;
KeepType: : Poi nter keep = KeepType:: New();

keep->Set I nput (| abel Col l ection);

keep- >Set ReverseOrdering(true);

keep- >Set Nuber Of Cbj ect s(atoi (argv[9]));

Prevent the filter to run in place, so the input image is not ifiextl

keep->Set I nPl ace(false);

typedef itk::AttributeCOpeninglLabel CollectionlmageFilter< LC Type > Qpeni ngType;
Qpeni ngType: : Poi nter opening = Openi ngType: : New() ;

openi ng->Set | nput (| abel Col l ection);

openi ng- >Set Lanbda(atof (argv[8]));

keep->Set I nPlace(false);

typedef itk::AttributeRelabel Label Col | ectionlmageFilter< LCl Type > Rel abel Type;
Rel abel Type: : Pointer relabel = Rel abel Type:: New();

rel abel ->Set I nput (| abel Col |l ection);
keep->Set I nPlace(false);

The attribute values can be put directly in a classic image.

typedef itk::Label CollectionlnageToAttributelmageFilter< LC Type, |Type > A2l Type;
A2l Type: : Pointer a2i = A2l Type:: New();
a2i->SetInput(|abel Collection);

Or the label collection can be converted back to an label @nagto a binary image (not shown here)

typedef itk::Label CollectionlnageToLabel | nageFilter< LC Type, |Type > L2l Type;
L2l Type:: Pointer |2i = L2 Type::New();

Finally, write the results

typedef itk::lmageFileWiter< |Type > WiterType;
WiterType::Pointer witer = WiterType:: New();

writer->Setlnput(a2i->GetCQutput());
writer->SetFileNane(argv[3]);
writer->Update();

witer->Setlnput(|2i->GetQutput());
| 2i ->Set | nput (keep->CGet Qutput ());
writer->SetFileNane(argv[4]);
writer->Update();

| 2i - >Set | nput (openi ng->CGet Qut put ());

8.3 Reading attribute values 17

writer->SetFileNane(argv[5]);
writer->Update();

| 2i ->Set I nput (rel abel ->CGet Qutput());
writer->SetFileNanme(argv[6]);
writer->Update();

return 0;

8.3 Reading attribute values

In that example, we will read a binary image, and get sometobates about the obejcts contained in that image. The
source code is available in the fadtribute_values.cxx

First include the classes we'll use

#include "itkl mageFil eReader. h"

#include "itkShapeLabel Object. h"

#include "itkLabel Col | ectionl mage. h"

#include "itkBinaryl mageToLabel Col | ecti onl mageFilter.h"
#include "itkShapeLabel Col | ectionl mageFilter.h"

int min(int, char * argv[])
{
const int dim= 2,

then declare the type of the input image

typedef unsigned char Pixel Type;
typedef itk::lmge< Pixel Type, dim> | mgeType;

read the inputimage

typedef itk::lmageFileReader< |mageType > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();
reader->Set Fi | eNane(argv[1]);

define the object type. Here the ShapelLabelObject type isechim order to read some attribute related to the shape
of the objects (by opposition to the content of the objecthwhe StatisticsLabelObejct).

typedef unsigned |ong Label Type;
typedef itk::ShapelLabel Object< Label Type, di m> Label Cbject Type;
typedef itk::Label Collectionl mage< Label Cbject Type > Label Col | ectionType;

convert the image in a collection of objects

typedef itk::Binaryl mgeToLabel Col | ectionl mgeFilter< |ImgeType, Label CollectionType > Converter Type;
ConverterType:: Pointer converter = ConverterType:: New();

18

converter->Set!nput(reader->GetQutput());
converter->Set Foregr oundVal ue(200);

and valuate the attributes with the dedicated filter: ShapelCollectionimageFilter

typedef itk::ShapelLabel Col | ectionl nmageFilter< Label Col |l ecti onType > ShapeFilter Type;
ShapeFi | ter Type: : Poi nter shape = ShapeFilterType:: New();
shape->Set | nput (converter->GetQutput());

update the shape filter, so its output will be up to date

shape- >Updat e() ;

then we can read the attribute values we're interesteBimarylmageToLabelCollectionimageFiltproduces consec-
utives labels, so a simple for loop will do the job.

Label Col | ectionType: : Pointer collection = shape->Get Qut put();
for(int |abel=1; Iabel<collection->CGetNunberCf Objects(); |abel++)
{
Label Qbj ect Type: : Poi nter |abel Gbject = col | ection->GCet Label Object(|abel);
std::cout << label << "\t" << |abel Object->CetPhysical Size() << "\t" << |abel Object->CetCentroid()

}

return 0;

}

9 Threading support

When possible, the filters provided with that contributicawvé been multithreaded. Some of them however, are
not (easily) threadable (th€eepNObjectand Relabelfilters), are shouldn’t get any performance improvement in a
threaded version (th®penindfilters).

TheBinarylmageToLabelCollectionimageFiltelass is a slight modification of the Richard Beai@snnectedCom-
ponentimageFilterand thus, has not been threaded. It should however be possimcrease its performance that
way.

The classical thread architecture is used when the inpugéismanmage the image is splitted in several regions (one
per thread), and each thread work on its own region.

Because theabelCollectionimagémage is not an array of pixels, it can’t be splitted that wagtead, several threads
are created, and try to take an object in the collection. df/thet one, they process that object individually, and try
to get another one when the object is processed. If no obgecbe get, the thread ends.FAstMutexLocks used to
ensure that only one thread take an object at a time.

For the developer, the usage of the threading support is Fe&giesimple, by subclassidgabelCollectionimageFilter

or InPlaceLabelCollectionlmageFilteand implementing the methatttual void ThreadedGenerateData(LabelOb-
jectType * labelObject in the new class. This method only has to process the labet®passed in parameter. All the
threading code and mutex lock managementis already impigrdeThe mutex lock remain accessible if the subclass
need to use it, as tha_LabelObjectContainerLodkar.

19

10 In place filtering

All the filters which are taking dabelCollectionlmageas input, and are producindabelCollectionimageas output,
are implemented as a subclasdrd®laceLabelCollectionImageFilteand thus are running in place by default.

The use can modify this behavior with tisetinPlace(bool,)InPlaceOn() andInPlaceOff()methods, as with the
usualinPlacelmageFilter

To use that feature, a developer only have to subdfeBgcelLabelCollectionimageFilteand implement theirtual
void ThreadedGenerateData(LabelObjectType * labelObjetm get easy thread suppdttor thevirtual void Gen-
erateData()if the filter is not threadable. In that last case, the onlydem&o manipulate is the one get with the
GetOutput()method, which is the input image if the filter runs in placea@opy of the input image if the filter is not
running in place.

11 Wrappers support

All the classes provided with that article, excepted the tingeseric ones made to help the developer to implement
some new features, can be used with WraplTK, and have bdgrdsted with python.

12 Known bugs and future work

To fit the ITK style, some iterators should be implementedd@ble to iterate over all the

e objects,
e lines,

e Or pixels
of an image, starting from

e animage,
e an object,

e oraline.

Doing that require a good knownledge of the iterator desfgry. help on that point is welcome.

Also, more attributes will be implemented, like the peripretstimation, the usual image moments, etc. It may be
useful to implement the most commonly used opening, keepjdttsband relabel transforms in a more efficient way,
by using amAttributeLabelObjecinstead of éShapelLabelObjedr a StatisticsLabelObject

The computation of the moments is partially implementede fiblp of someone with a good knownledge of that
subject would be very helpful to complete that work. The motador the binary shape should also be implemented.

All the Shapdilters are currently able to use the Feret diameter only inrBBges. For the other dimensions, the feret
diameter is not computed, and so always get a value of 0. Timpgtation of the Feret diameter should be forced if
the user want to use it.

TheBinarylmageToLabelCollectionimageFiltelass should be threaded to get the best of that filter on pnattessors
systems.

Finally, all the binary and label filters should be implenezhas a subclass biPlacelmageFilter

3see the previous section

20

13 Conclusion

ITK is currently lacking a good way to manipulate the binabjezts. With that contribution | hope to have mostly
filled that lack.

14 Acknowledgments

| thank Richard Beare for his suggestion to use the run leegtioding to represent the binary objects, and Julien
Jomier for his help for the choice twtuse theSpatialObjectlass as base class of thabelObejctlass.

| thank Dr Pierre Adenot and MIMA2 confocal facilitiebt{ p: // m ma2. j ouy. i nra. fr) for providing the 3D test
image. | am grateful to the INRA MIGALE bioinformatics platin (ht t p: // nmi gal e. j ouy. i nra. fr) for providing
the computational resources used for the timing tests.

References

[1] L. Ibanez and W. Schroeder. The ITK Software Guide Kitware, Inc. ISBN 1-930934-10-6,
http://www.itk.org/ItkSoftwareGuide.pdf, 2003.

http://mima2.jouy.inra.fr
http://migale.jouy.inra.fr

	Introduction
	Definitions
	Label
	Labeled image
	Binary image
	Attribute

	Existing classes and naming convention in ITK
	Data representation
	itk::LabelCollectionImage
	itk::LabelObject and its specializations
	itk::ShapeLabelObject attributes
	itk::StatisticsLabelObject attributes

	itk::LabelObjectLine

	General view of the usage
	Generating the itk::LabelCollectionImage
	Valuating the attributes
	Manipulating the itk::LabelCollectionImage
	Generating an itk::Image from the itk::LabelCollectionImage

	Prebuilt mini-pipeline filters
	Binary filters
	Label filters

	Binary specialization of mathematical morphology filters
	Usage examples
	Prebuilt pipelines
	Binary shape opening
	Statistics relabel
	Label shape keep N obejcts
	Binary fill holes

	LabelObject and LabelCollectionImage manipulation
	AttributeLabelObject

	Reading attribute values

	Threading support
	In place filtering
	Wrappers support
	Known bugs and future work
	Conclusion
	Acknowledgments

