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Abstract 
 

This document describes work-in-progress for refactoring ITK’s registration methods to exploit the parallel, computation power 
of multi-processor, shared-memory systems.  Refactoring includes making the methods multi-threaded as well as optimizing the 
algorithms.  API backward compatibility is being maintained.  Helper classes that solve common registration tasks are also being 
developed. 
 
The refactoring has reduced computation times by factors of 2 to 200 for metrics, interpolators, and transforms computed on 
multi-processor systems.  Extensive sets of tests are being developed to further test operation and backward compatibility. 
 
More information on this project is available at: 
http://www.na-mic.org/Wiki/index.php/ITK_Registration_Optimization 
 
NOTE #1: Recent changes to ITK and BatchMake in preparation for the release of ITK v3.4 and in support of Slicer have caused 
the build of this project to fail.  Please visit this project’s dashboard (available via the link above) prior to downloading the code 
to ensure that the code is working.    
 
NOTE #2: The software is being incorporated directly into ITK.  It should be available via ITK’s CVS approximately one month 
after the release of version 3.4 of the Insight Toolkit (October/November 2007).  The above wiki page will contain up-to-date 
information. 
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1 Introduction 

The work-in-progress described in this paper focuses on refactoring ITK’s registration framework [Ibanez 
2002] to take advantage of the parallel, computation capabilities of multi-processor, shared-memory 
systems.  The refactoring consists of multi-threading the methods as well as optimizing the algorithm 
implementations.  Simultaneously, backward compatibility with ITK’s existing classes must be 
maintained. 

Regarding multi-threading, while ITK’s execution pipeline for filters supports multi-threading, ITK’s 
registration framework is not multi-threaded and several of its methods are not thread safe.  Many of the 
registration modules presented in this paper, on the other hand, make heavy use of multi-threading, and 
all are thread safe. 

Regarding algorithm optimization, it should be noted that ITK’s registration methods were built to 
support research, so their implementations emphasized easy-to-understand code and a plug-and-play 
framework.  ITK’s registration framework is illustrated in Fig. 1.  Modules can be substituted into the 
transform, interpolator, metric, and solver components.  In contrast, the work presented in this paper 
emphasizes computational speed, i.e., certain implementations have been specialized to speed specific 
combinations of modules.  For example, all image-to-image metrics now detect if they are being 
combined with a cubic b-spline transform, and in those situations, appropriate pre-computations and 
algorithmic shortcuts are taken.  Nevertheless, in keeping with the policies of the Insight Software 
Consortium, backward compatibility with ITK’s existing API was maintained.  

Figure 1.  ITK’s registration framework.  Modularity promotes research and experimentation.  For 
optimization, specific combinations of modules are being integrated to speed specific applications. 

ITK’s registration methods needed to be refactored because of the growing role of registration in medical 
image analysis and the extensive registration computation time (over 15 hours) that has been anecdotally 
reported when using ITK.  As driving problems, we selected registration for atlas formation and 
registration for atlas-based segmentation, particularly as featured in the EMSegmenter algorithm 
developed by Dr. Kilian Pohl [Pohl 2006].  Dr. Pohl’s algorithm is widely used as the EMSegmenter 
module in Slicer (http://www.slicer.org).  His algorithm relies on the inter-subject mapping of cortical 
MRIs.  An analysis of this driving problem led us to focus on the following ITK modules and their 
combinations: 

Transforms:  Rigid, affine, and BSplines 

Interpolators:  Linear and cubic-BSplines 

Metrics:  Mattes mutual information [Mattes 2003] and mean-squares error 
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Solvers: One-plus-one evolutionary optimization [Styner 2000] and LBFGSB (Limited 
memory Broyden Fletcher Goldfarb Shannon minimization with simple Bounds) 
optimization [Zhu 1997] 

Beyond the above driving problem, the work presented in this paper includes updates to every transform, 
interpolator, and image-to-image metric in ITK due to base-class modifications needed to support thread 
safety.  Ongoing work is focusing on further speed improvements and extensive testing. 

Further details on the background and significance for the work are given next.  Then the optimization 
techniques and the measures used to quantify their performance are presented.  The performance 
improvements gained on two different multi-processor platforms are then presented.  The conclusion 
discusses future work.  Additional and updated details are available on the web at the following link: 

http://www.na-mic.org/Wiki/index.php/ITK_Registration_Optimization. 

2 Background and Significance 

By focusing on multi-processor, shared-memory systems, the work presented herein addresses the current 
trend in computer hardware for laptops, desktops, workstations, computer servers, and grid nodes.  In 
those systems, the trend is to use multi-core processors such as Intel’s Core2Duo chip.  Intel estimates 
that over 85% of the processors it is producing are multi-core processors.  Today, nearly every new 
desktop contains a multi-core processor, and mid-range ($4,000) compute servers typically have eight 
dual-core processors.  On a server with eight dual-core processors, 16 independent tasks can 
simultaneously process a common dataset – thereby potentially generating a result 16 times faster.  Intel 
predicts that within three years, 32-core processors will be the norm – thereby suggesting desktops with 
32 cores and compute servers with 256+ cores. 

Distributing a task across the processors and cores of a system is accomplished using multi-threading.  
Typically, threads are sections of a program that can be computed independently and simultaneously.  
Defining a multi-threaded implementation of an algorithm requires consideration of how information will 
be allocated to, computed on, and recombined from the threads.  Some algorithms are easy to implement 
in a multi-threaded manner while other algorithms cannot be effectively multi-threaded.  Given the multi-
core future of computer hardware, algorithm researchers as well as algorithm implementers need to 
understand multi-threading. 

The techniques used to develop optimized registration modules for ITK are summarized next. 

3 Techniques Used in Development and Testing 

This ongoing project involved code optimization and threading, process prioritization and timing, and 
comparative quantification of performance gains. 

 

3.1 Optimizations and Threads 

http://www.na-mic.org/Wiki/index.php/ITK_Registration_Optimization
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The work began by focusing on non-rigid registration and then spread to include other registration 
challenges.  Numerous small changes were made to the code.  The major changes are as follows: 

1) Developed multi-threaded versions of ITK’s image-to-image metrics.  Mattes mutual information 
metric, the mean-squared error metric, and similar voxel-matching metrics now derive from a 
common image-to-image-metric base class that provides: 

a. Sampling strategies for computing the metric using a (sub-)sample of points in the images: (i) 
random sub-sampling, (ii) user-specification of the sub-sample points, or (iii) using every 
voxel in the images.  Furthermore, (iv) a mask can be used to limit the domain of (i) random 
sub-sampling and (iii) using every voxel. 

b. Distributing the (sub-)sampled points across threads when computing the metric, 

c. Threading the pre-computation of a gradient image to speed metric derivative computation, 

d. Caching the affine pre-transform of the (sub-)sampled points when a metric is combined with 
a BSpline transform, 

e. Pre-computing the BSpline coefficients for the (sub-)sampled points when a metric is 
combined with a BSpline transform, 

f. Providing “hooks” so that derived classes can conduct threaded computations in three 
synchronized phases.  This approach was chosen to avoid the use of mutex locks – additional 
details are given below. 

2) Made ITK transforms thread safe.  While most ITK transforms do not need to use member variables 
to transform a point, kernel-based transforms (such as the b-spline and thin-plate-spline trasnforms) 
benefit from using member variables to avoid having to repeatedly allocate and free large data 
structures that hold intermediate values.  ITK’s original implementation of select transforms, such as 
many of the kernel-based transforms, were not thread safe because the use of those intermediate-value 
member variables was not thread-safe.  In the presented implementations, the base itkTransform class 
was modified so that all transforms may have thread-specific data. 

3) Identified and optimized frequently used code segments.  Several commonly used and 
computationally expensive routines were identified using Lightweight Technologies’ LTProf 
(http://www.lw-tech.com/), Linux’s Valgrind (http://valgrind.org) and Intel’s VTune 
(http://www.intel.com) profiling tools.  For example, ITK’s image Fill() method uses a pixel-by-pixel 
iterative assignment technique.  In registration, images are often used to store intermediate values 
such as joint histograms.  As a result, every value and derivative computation was making multiple 
calls to Fill(), typically to set those values/images to zero.  Given that derivatives of joint histograms 
equate to images with 30,000+ pixels, the Fill() method was accounting for nearly 10% of the time 
spent on a metric value computation.  Replacing Fill() with a single system-level call (memset) 
reduced computation time by nearly 10%.  Similar savings were discovered for other frequently 
called routines. 

Mutex lock checking was determined to be extremely time consuming on SunOS and other platforms.  
The initial implementations made use of mutex locks.  Experiments revealed, however, that even when 
mutex collisions did not occur, the computation time of a single mutex check per sample exceeds the per 
voxel time for computing a Mattes Mutual Information metric value. 
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Instead of using mutex locks, the current implementations create unique copies of relevant variables for 
each thread and then join their results after thread completion.  The challenge is to manage the allocation 
of data to those variables and the integration of the results from those variables.  If that allocation and 
integration is conducted in the main thread, those costs (i.e., computation times) can exceed the benefits 
of threading.  To alleviate those costs, the implementations provide the “hooks” for three, synchronized 
sets of threads, as discussed above in Optimization, 3.1.1f.  Typically, first one set of threads is run to 
initialize the thread specific variables.  The second set of threads is then run to process the samples 
allocated to each thread and accrue their results in their thread-specific variables.  The third set of threads 
is then run to combine the results from the thread-specific variables into the final result.  A set of threads 
is not begun until the prior set of threads completes.  Consider, for example, that for Mattes Mutual 
Information computation there is a joint histogram variable.  To partition the samples to different threads, 
each thread is given its own copy of the joint histogram variable.  During the first set of threads, each 
thread initializes its joint histogram to zero.  During the second set of threads, the each thread’s samples 
are inserted into that thread’s histogram.  During the third set of threads, the summation of the total joint 
histograms is threaded – that is, each thread is responsible from summing a different region of the total 
joint histogram from the thread-specific histogram variables.  Different initialization, allocation, and 
integration strategies are used for different variables. 

Our work also revealed that certain changes and parameterizations could improve performance on one 
platform and degrade performance on others.  For example, one surprising observation was that using 
more threads than processors had negligible effect on computation speed on certain machines, while on 
other platforms using more threads than available processes resulted in significant degradation in 
performance.   Additionally, the cost to initiate a thread on certain platforms is much greater than on other 
platforms. 

The complexity of the optimization task necessitated establishing an infrastructure that verified backward 
compatibility and monitored the effects of the day-to-day code and parameter changes for multiple 
platforms.  That infrastructure is discussed next. 

 

3.2 Backward Compatibility and Performance Monitoring 

The registration methods presented were implemented to maximize their backward compatibility with and 
speed relative to the standard ITK implementations.  Backward compatibility was judged by providing 
consistent results and maintaining a consistent API with respect to the standard ITK implementations.  
Speed was quantified using real-world (“wall clock”) time.  These criteria were tested as follows. 

Backward Compatibility: To ensure consistent software, i.e., having a backward compatible API and 
generating similar results, the infrastructure included iterative, interleaved testing of standard ITK 
methods and the optimized methods.  The consistency of these tests was controlled by writing them as 
C++ frameworks that used symbolic placeholders where the registration methods were left unspecified.  
CMake’s CONFIGURE_FILE command was then used to substitute calls to the standard and optimized 
methods at the symbolic placeholders.  Tests of the standard ITK methods were interleaved with tests of 
the optimized methods to quantify and thereby enable compensation for workload fluctuations on the 
testing platforms.  The standard tests also served to verify that the optimized methods produced similar 
results, as explained next. 

The optimized methods, for any given number of threads, produce consistent results, and in most cases, 
when run using a single thread, produce the same results as the standard methods.  However the 
optimized methods’ results may vary as the number of threads is varied.  Result variation by number of 
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threads arises from across-thread problem partitioning.  As mentioned previously, threading often 
necessitates the use of additional intermediate values for each additional threads used.  Such changes in 
intermediate processing may have an effect on the accumulated values produced, in part due to machine 
precision.  Such variations are likely to have a negligible effect on the result from a single registration 
optimization iteration, but their cumulative effect over many iterations may be greater.  Nevertheless, the 
implementations, computations, and final outcomes are still valid. 

For reasons of consistency as explained above, and to ensure backward compatibility for user-derived 
(potentially not thread-safe) code that is not distributed with ITK, the optimized methods default to 
running single threaded.  The user must call metric->RunMultiThreaded(void) to run with the ITK 
defined default number of threads.  The ITK defined default number of threads is the lesser of 8 or the 
number processors on the system, see Insight/Code/Common/itkMultiThreader.h.  The user may also set 
the number of threads by calling metric->SetNumberOfThreads(int).  Either call must be made 
prior to calling metric->Initialize(void).   

Performance Monitoring:  There were two components to process monitoring: speed quantification and 
centralized reporting.  This project made significant developments in each area. 

For this project, speed quantification involves code instrumentation, process prioritization, and workload 
compensation.  Code instrumentation refers to the explicit use of start and stop timing calls in the tests.  
Time for loading/creating the fixed and moving images and for initializing the registration framework is 
not included in the timing results.  The timers are provided by ITK’s high performance, cross-platform 
timing routines (Insight/Code/Common/itkRealTimeClock.h).  Since the tests used real-world timers and 
since the workload placed by other users on the test platforms could not be controlled and varied day to 
day, process prioritization and workload compensation are used.  Specifically, to mitigate some of the 
effects of concurrent users, an itkHighPriorityRealTimeClock class (located in 
BWHITKOptimization/Code/Utilities) is defined.  When an instance of that class is instantiated in a 
program, the process’ priority is increased.  When destructed, the process’ priority is returned to normal.  
Furthermore, as previously mentioned, the standard ITK methods’ tests are interleaved with the optimized 
methods’ tests.  The speed of the standard ITK methods is thus available to normalize the speed of the 
optimized methods.  Thereby, three measures of performance are reported. 

The first measure is the absolute (real-world) run time of the method, Equ. 1.  In addition to the number 
of threads, if a metric is being measured then its time is typically parameterized by the number of samples 
used to compute the metric, the type of interpolation used, the transform used, and the number of metric 
value or derivative computations performed.  If a transform is being measured, then its time is typically 
parameterized by the type of interpolation used and the number of point transformations performed. 

Tn = A + B/n  (1) 

In Equ. 1, A is the portion of the method that cannot be threaded and B is portion of the method that can 
be threaded. 

The second measure is often called speedup or Amdahl’s law [Amdahl 1967].  

Cn   =   T1 / Tn   =   (A + B) / (A + B/n) (2) 

Amdahl’s law states that the speedup of a threaded algorithm will eventually begin to decrease as 
additional threads are used, since the serial component remains constant and since the above equation 
does not account for the cost of distributing data to and integrating data from the parallel processes.  Such 
behavior is revealed in the results presented in this paper. 
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The third measure is called optimization ratio, Equ. 3.  It compares the absolute run time of the 
unoptimized (single-threaded) version of a method with its optimized version running in n threads.  This 
metric compensates for workload variations and partially compensates for cross-platform differences in 
processor type and speed. 

Rn = T1(unoptimized) / Tn(optimized) (3) 

The above three metrics only require the computation of the real-world run times of the unoptimized and 
optimized methods on the testing platforms.  The challenge is managing the variety of tests and their 
parameters.  We developed a novel system for managing these tests, as explained next. 

Centralized Performance Reporting: To compute and collect the above measures on the testing platforms, 
BatchMake (http://www.batchmake.org) and CMake (http://www.cmake.org) are integrated.  BatchMake 
is a cross-platform system for scripting parameter space explorations and batch image processing.   
BatchMake also includes a web-based reporting system, where results from BatchMake scripts can be 
collected, monitored, graphed, and compared over the web.  By integrating BatchMake with CMake, a 
cross-platform testing system with centralized reporting is established.  Using this system, a cmake 
build/test sequence now automatically initiates the following: 

a. BatchMake’s implementation of the Whetstones benchmark is run to compute the speed, i.e., 
MFLOPS and MIPS ratings, of a single core on each testing platform. 

b. BatchMake’s system information library is used to determine the number of cores as well as 
the physical and virtual memory space of each testing platform. 

c. Based on the n cores on the testing platform as well as its total physical memory, ctest is used 
to run a set of relevant tests, e.g., using n or fewer threads and image sizes less than a pre-
defined limit based on total physical memory. 

d. Results from each test are automatically sent to a central BatchMake server.  The server then 
generates a multitude of web-based graphs and links those graphs with the CMake dashboard.  
These graphs reveal the complexities of the high-dimensional parameter space of algorithm 
parallelization.  Linking with CMake dashboards reveals how changes in performance are 
tied to changes in the code.  New graphs can be interactively specified. 

A subset of those tests, platforms, and results are presented next.  

4 Results 

Space and time limit the breadth and depth of the results that can be presented herein.  This paper instead 
focuses on a popular set of registration modules and two mid-range compute servers.  The registration 
module configurations reported in this paper are the following: 

1. Mattes mutual information metric with cubic B-Spline transform and cubic B-Spline interpolation 

2. Mattes mutual information metric with linear transform and linear interpolation 

3. Mean squared error metric with linear transform and linear interpolation 
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Table 1 lists the machines on which the tests are computed nightly.  The tests that are run on each 
machine vary based on the number of simultaneous threads supported, i.e., number of CPUs x number of 
cores per CPU = number of simultaneous threads supported.  Tbl. 1 reveals that the code works on Apple 
Mac OSX, Linux 32bit, Linux 64bit, and SunsOS platforms.  Furthermore, experimental builds routinely 
(albeit not nightly) test the code on Microsoft Windows. 

Table 1. Machines on which nightly tests are conducted to track the ITK optimizations being developed. 

 

John 

Forest 

The two machines focused upon in this paper are highlighted: John and Forest.  These machines reside 
within the Surgical Planning Laboratory of the Brigham and Women’s Hospital. 

• John is a 64-bit machine with 8 dual-core, 2.4, GHz AMD processors; 128 GB of shared memory; 
and 64-bit Linux kernel 2.6.  The tests were compiled using GCC version 4.1 and CMake’s 
“Release” build options.  Tests were performed using 1, 2, 4, 8, and 16 threads on this platform. 

• Forest is a 32-bit machine with 10 single-core, 750 MHz, Sparc processors; 9 GB of shared 
memory; and SunOS 5.8.  the tests were compiled using GCC 3.0 and CMake’s “Release” build 
options.  Tests were performed using 1, 2, 4, and 8 threads on this platform. 

Select results from these two test platforms are summarized next.  The graphs shown below are taken 
directly from the nightly “Batchboards” for this work.  Additional Batchboard results can be viewed at 

http://www.insight-journal.org/batchmake/ 
(click on the “BWH-ITK Optimization” public project link) 

 

4.1 Mattes Mutual Information Metric with Cubic B-Spline Transform and Cubic B-Spline 
Interpolation 

One view of Mattes mutual information metric run times (Equ. 1) is given in Fig. 2.  For these tests, the 
metric is paired with a B-Spline transform consisting of a 12x12x12 grid of control points and a cubic B-
Spline interpolator.  These run times are for 5 calls to the metric->GetValue() function using 50,000 
(red line) and 100,000 (blue line) samples per metric evaluation.    

http://www.insight-journal.org/batchmake/
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Figure 2. Mattes mutual information metric evaluation run times for 5 calls to metric->GetValue() using a 
B-Spline transform and B-Spline interpolation, for various number of threads.  Results for the machine Forest are 

given on the left and for the machine John on the right. 

The corresponding speedup (Equ. 2) for the optimized metric with 100,000 samples using 8 threads on 
Forest is C8 = 12.02 / 3.10 = 3.99.  The speedup for the optimized metric using 16 threads on John is C16 
= 2.22 / 0.65 = 3.42.  By Amdahl’s law we can expect speedup to eventually decrease as more threads are 
added. 

In Fig.3 the optimization ratios (Equ 3), that compare the optimized method with the standard ITK 
method, are given.  Values greater than one, when one thread is used, indicate that the optimized method 
is faster than the standard ITK method when run single threaded.  On both machines the optimized 
method is on average approximately 6 times faster than the standard ITK method when 8 threads are used. 

  
Figure 3. Optimization ratios (Equ. 3) for Mattes mutual information metric with a B-Spline transform and B-Spline 

interpolation.  Improvement compared to the standard ITK method is better than linear on Forest (left) and only 
slightly less than linear on John (right). 

A view of Mattes mutual information metric run times and optimization ratios, for five calls to the 
metric->GetDerivative() function, are given in Fig. 4.  In these tests, as in the previous set, a 
16x16x16 grid of control points is used with the B-Spline transform and linear interpolation is used. 
These graphs reveal the challenges associated with metric optimization as well as the costs associated 
with distributing data to and integrating results from multiple threads.  Specifically, they show that run 
times may actually increase as more threads are used. 
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Figure 4. Run times (top row) and optimization ratios (bottom row) for the metric->GetDerivative() function 
of the optimized Mattes mutual information metric using B-Splines for the transform and the interpolator.  On both 

testing platforms (left = Forest, right = John) the best speedup for 100,000 samples was achieved using four 
threads, e.g., C4 = 47.0 / 17.8 = 2.6 for Forest.  Using additional threads increases run times. 

 

4.2 Mattes Mutual Information Metric with Linear Transform and Linear Interpolation  

The run times in Fig. 5 correspond to tests using the Mattes mutual information metric using a linear 
(matrix and offset) transform and linear interpolation.  The optimization ratios (Equ. 3) were on average 
approximately 4.0 when 8 threads were used on either platform. 

In these tests, unlike the previously reported tests, 10 calls were made to each function, i.e., run times are 
for conducting twice as much work.  While changing the number of calls per test confounds the 
comparison across methods, that changed was deemed necessary.  The motivation is that the runtimes 
were excessive when using Mattes Mutual Information metric with BSpline transforms and interpolators 
on certain platforms.  Therefore, to reduce testing time, we reduced the number of calls for that setup.  
However, we also determined that using fewer than 10 calls for the other tests caused those tests to be 
very susceptible to minor changes in platform workload since those tests using 10 calls already completed 
in less than one second on most platforms.  We regret the confusion, but judged the presented situation to 
offer an acceptable balance. 



  11 

   

   
Figure 5. Run times for ten calls to metric->GetValue() (top row) and ten calls to  

metric->GetDerivative() (bottom row) for Forest (left column) and John (right column).  These tests paired 
Mattes mutual information metric with a linear transform and a linear interpolator. 

 

4.3 Mean Squared Error Metric with Linear Transform and Linear Interpolation 

Fig. 6 presents the run-times for ten calls to metric->GetValue() and metric->GetDerivative() 
for the Mean Squared Error metric using a linear transform and linear interpolation.   

The standard ITK implementation of the Mean Squared Error metric required the use of every sample in 
the image when computing the GetValue()and the GetDerivative() functions.  The optimizations 
performed and the use of a subset of the voxels (sub-sampling) enabled the new metric’s optimization 
ratio (Equ. 3) to typically exceed 300 or more, based on the image size.  That is, while ITK’s standard 
implementation prohibited the use of this metric in most situations, the optimized version now makes this 
metric a viable alternative. 



  12 

  

  
Figure 6. Mean Squared Error metric run times for ten calls to the metric->GetValue() (top row) and 

metric->GetDerivative() (bottom row) for Forest (left column) and John (right column).  Linear interpolation 
and linear transforms were used with the metric.  50,000 (red line) and 100,000 (blue line) samples were used for 

the metric computations. 

5 Discussion 

The work-in-progress presented in this paper spans a multitude of registration modules in ITK.  Only a 
subset of the results could be presented in this paper.  Much additional work remains. 

The results indicate that the optimizations employed can decrease the run-time of select existing ITK 
registration programs by a factor of 6 or more.  Run-time improvement ratios will vary significantly if the 
registration optimizer uses derivatives more heavily than value calls, if the number of threads used isn’t 
optimal, or if the problem size is too small. 

The problem sizes used in the tests presented in this paper are small compared to real-world problems and 
thereby the potential speedup offered by the optimized methods is under estimated.  Typically when using 
512x512x400 images, more that 100,000 samples should be used to drive the deformable registration 
optimization process.  Problem sizes were kept small in the tests presented in this paper to allow for the 
nightly testing of multiple parameterizations.  Using larger sample sizes will increase the parallelizable 
component of the method (i.e., the term B in Equ 1) – thereby resulting in more speedup for any given 
number of threads and continued speedup as more threads are used.   

Future work will borrow from several of the parallelization techniques presented in [Rohlfing 2003].  In 
particular, we are extending the metrics and the B-Spline transform to produce sparse Jacobian matrices 
that exclude B-Spline control points that do not containing meaningful image information (e.g., contain 
only background voxels).  This will reduce the computation time per iteration and should simplify the 
solution space considered during registration optimization. 
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