
vtkINRIA3D: A VTK Extension for
Spatiotemporal Data Synchronization,

Visualization and Management
Release 1.00

Nicolas Toussaint1, Maxime Sermesant1 and Pierre Fillard1

July 6, 2007

1INRIA Sophia Antipolis, Asclepios Project-Team, France

Abstract

This paper presents an extension of the Visualization ToolKit dedicated to spatiotemporal data syn-
chronization, visualization and management. It basically consists in a versatile library providing func-
tionalities to help developers setting up sophisticated applications with minimal development effort.
In the medical imaging context, various types of data are often encountered, which raises the need
for adapted visualization and synchronization techniques. Moreover, the management of these data
(organization, creation, deletion, access) can become a burden. We propose in vtkINRIA3D a strat-
egy to synchronize interactions between datasets representations, to manipulate complex objects (e.g.,
neural fibers as obtained in DT-MRI), as well as a managing framework for organizing data (includ-
ing temporal sequences). The efficiency of vtkINRIA3D is illustrated with two applications: Med-
INRIA (general medical image processing software) and CardioViz3D (cardiac image visualization).
vtkINRIA3D is open-source, and comes with a set of examples, test data and softwares built upon it:
http://www-sop.inria.fr/asclepios/software/vtkINRIA3D.

Contents

1 Introduction 2

2 The vtkRenderingAddOn Library 3

3 The vtkVisuManagement Library 5

4 The vtkDataManagement Library 7
4.1 The vtkDataManager and the vtkMetaDataSet Classes. 8
4.2 Time Support .10

5 Applications 11
5.1 MedINRIA .11
5.2 CardioViz3D .11

6 Conclusions and Future Work 12

2

A Examples 13
A.1 SynchronizedViews. .13
A.2 The Data Manager .14

1 Introduction

The Visualization ToolKit (VTK) [2] offers an impressive set of comprehensive C++ classes for data repre-
sentation and manipulation, and has become a standard in scientific visualization. Not only VTK provides
state-of-the-art techniques for processing datasets and displaying meaningful information from them, but it
also eases a lot the developer’s pain by the object-oriented programming and clarity of the coding.

In medical image processing and visualization, one often has to deal with very specific types of data that
require specialized visualization and interaction techniques. Moreover, the management of all these data by
programmers who want to build a complete processing and visualization system can be a challenging task,
due to the various forms they can take, and to the specific visualization strategies they require. In order to
provide a more straightforward approach, we thought of three important features:

• Synchronization of interactions and visualization among windows. For instance, when one clicks on
a window to position an axis in a slice of a 3D volume, one would like to have the other windows
displaying this data (if any) to automatically set their axis at the exact same position. This feature is
very desirable when comparing images or when looking at a 3D volume with different orientations.
Another example is when one adjusts the contrast of a view: one would like the other views to adjust
their contrast similarly.

• Adapted manipulation of complex data coming from the increasing diversification of the source of
medical information. For instance, diffusion tensor MRI (DT-MRI or DTI) [4] is a very attractive
modality since it allows to reconstruct white matter fibers from several MR measurements. Up to
several thousands of fibers can be reconstructed, and obviously it requires adapted visualization and
interaction techniques to give medical experts the chance to extract a specific fiber bundle of interest.

• Simple and efficient management of these data for programmers. In particular, we thought interesting
to have a single object that reads, writes, allocates and deletes any sort of dataset (images, meshes,
neural fibers, etc.), so that a complete visualization system of any type of data could be easily plugged
in a homemade program. Moreover, support of temporal sequences of these data is extremely desir-
able, especially in cardiac research.

ThevtkINRIA3D library is a concrete implementation of these features. There are numerous visualization
projects built around VTK and ITK (Slicer, MITK,...) but the aim ofvtkINRIA3D is to make available
a simple and versatile library providing the described features and allowing developers to build their own
software upon it. This is why it is basically an extension of VTK, i.e. a collection of new classes based on
the VTK architecture.vtkINRIA3D is divided into three libraries following the three points presented above:

• ThevtkRenderingAddOn library (Sec.2) implements a strategy for synchronization of visualization
and interactions among windows.

3

• The vtkVisuManagement library (Sec.3) provides a set of classes that manages the visualization,
interaction, ROI extraction of certain type of data, like tensor fields, VTK polylines, and isosurfaces.

• ThevtkDataManagement library (Sec.4) offers a framework to handle heterogeneousvtkDataSet
objects by federating them into a single class namedvtkDataManager and supporting time sequences
of these objects.

In addition, we briefly present in Sec.5 two softwares based onvtkINRIA3D: MedINRIA, which is a collec-
tion of graphic tools targetting the clinicians, andCardioViz3D, a platform for the processing and visualiza-
tion of cardiac imaging.

Requirements:vtkINRIA3D is compiled withVTK 5.0.3, ITK 3.2.0 (for some optional components),
CMake 2.4.6, and is open-source. Source code, doxygen files, dashboard, and examples data can be found
at: http://www-sop.inria.fr/asclepios/software/vtkINRIA3D.

2 The vtkRenderingAddOn Library

The main purpose of the vtkRenderingAddOn library is to provide a framework to synchronize user inter-
actions on avtkRenderWindow. To do so, a cycled-tree structure is used. The base class,vtkView, is fed
with avtkRenderer, vtkRenderWindow and avtkRenderWindowInteractor to display and interact with
vtkActors. It has also a uniqueParent (of the same type) and a set of children (of the same type as well).
Then, when a synchronized method is called, the calledvtkView transmits it to its children and so on. As
this is a cycled structure, one should be careful that the first calling object is not called again, which would
result in an infinite loop. To prevent this undesirable behavior, we implemented aLock() andUnLock()
methods that eachvtkView must call before and after calling its children’s method.

The classvtkView implements this strategy for the synchronization of user interactions. However, it does
not provide any concrete feature, as this base class should remain as generic as possible. A concrete im-
plementation is given by classesvtkViewImage2D andvtkViewImage3D which derive from the base class
vtkViewImage (which itself derives fromvtkView). The classvtkViewImage is the interface class for the
functions shared by any view that displays an image. The specificity ofvtkViewImage2D is to display an
image slice by slice, whilevtkViewImage3D displays an image in 3D using either multi-planar reconstruc-
tion (MPR) or volume rendering (VR) techniques. Moreover, in VR, avtkBoxWidget allows the user to
remove a volume of interest from the displayed image. This gives for instance a rapid insight into a patient’s
brain and is a very desirable feature. The methods that can be synchronized are:

• Adjust Window/Level:SyncSetWindow(), SyncSetLevel();

• Set the position:SyncSetPosition();

• Set a lookup table (SyncSetLookupTable()), a mask image (or ROI) (SyncSetMaskImage()), a
vtkDataset (SyncAddDataSet()), or avtkPolyData (SyncAddPolyData());

Notice that all synchronized functions start bySync. Naturally, the “desynchronized” version of the same
function has the same name withoutSync, like SyncSetWindow() andSetWindow(). We illustrate the
synchronization mechanism with the methodSyncSetColorWindow(double w):

void vtkViewImage::SyncSetColorWindow (double w)
{

4

if(!this->IsLocked())
{

this->SetWindow (w); // actually change the window

// The current view is now locked to prevent it to be called again and again...
this->Lock();
for(unsigned int i=0; i<this->Children.size(); i++)
{

vtkViewImage* view = dynamic_cast<vtkViewImage*> (this->Children[i]);
if(view)
{
view->SetColorWindow (w);
view->Render();

}
}
this->UnLock();

}
}

Obviously, the effect of the synchronized methods will be different depending on the implementation made
in each class. For example, callingSyncSetPosition() on avtkViewImage2D object will place 2D cursors
on the exact required position, while avtkViewImage3D object will intersect the 3 orthogonal planes at this
position when MPR is selected, or position a 3D cursor at the exact same coordinate when VR is activated.
Note that the two last methods (SyncAddDataSet() andSyncAddPolyData()) are particularly interesting
since they allow to project anyvtkDataSet (and derived classes) onto the 2D views: a slice of the dataset
is extracted using either avtkCutter (SyncAddDataSet()) or avtkClipDataSet (SyncAddPolyData()).
The former cuts the dataset with the current image slice, i.e., it returns the intersection of the dataset with a
plane defined by the current slice displayed. As a consequence, it turns a N-Dimensional dataset into a N-
1-Dimensional dataset (e.g., lines become points). The later extracts the polygonal data contained between
two planes defined by the current image slice plus a user-provided thickness (generally the spacing between
two consecutive slices). This has the advantage to preserve the dimensionality of the data (lines are still
lines).

Extra classes are provided for further interactions: the classvtkViewImage2DWithTracer allows to man-
ually trace on a 2D slice (using the VTK classvtkImageTracerWidget) and to transform the trac-
ing into a binary image itself overlapped onto the views (and synchronized among them). The class
vtkViewImage2DWithOrientedPoint gives the possibility to place a point and a direction on a slice to
perform for instance a manual rigid transformation of this image.

When the user wants to remove a view from the tree, he should call the methodDetach(): it alerts the
Parent’s view that it is detaching and connects its ownChildren to its Parent’s ones. This prevents any
loss in the synchronization mechanism (Fig.1 left and middle). Moreover, when a view is ”re-parented”
(case ofView4 on Fig.1 right), itsParent is automatically alerted and the detaching object is automatically
removed from theChildren list of its Parent. This insures that a view is the child of only one view, thus
preventing to be called several times by severalParents.

An example of how to use these synchronized views is given in the folderExample/SynchronizedViews
and described in AppendixA.1.

We included invtkINRIA3D the source of a software, calledImageViewer, that uses the synchronized views
described above (see Fig.2). Moreover, it offers some interesting features that are not present in many
medical image visualization softwares:

5

Initial Tree After View2->Detach() After View3->AddChild(View4)

Figure 1: Left: Initial tree. Four views are linked: View1 has child View2, View2 has children View3 and View4,

and View4 is linked back to View1. View3 has no child, meaning that it can only receive function calls but not transmit

any. Middle: When one wants to remove a view, one should call the method Detach(): View2->Detach() in this

example. This results in the removal of View2, but View2’s Parent is automatically re-linked to its children, avoiding

a loss in the synchronization of the remaining views. Right: We now want to link View3 with View4. In that case,

View4’s parent is informed that it lost a child, thus preventing a single view to be the child of several others (then

preventing to receive multiple function calls from their parents).

• Full DICOM support using ITK I/O factory mechanism [6];

• Tab-browsing of images;

• A preview screen (Fig.2) to compare images: interactions can be synchronized, which allows to
interact with many images by acting on only one of them;

The user-interface ofImageVieweris made inwxWidgets [3] in order to be integrated inMedINRIA(more
details can be found in Sec.5.1).
The next section depicts a library specialized in visualization of various data.

3 The vtkVisuManagement Library

The flavor of this library is to facilitate the task of programmers who want to quickly integrate nice visual-
ization and interactions of scientific data into their software. This library is composed of a set of classes,
each of them handling the rendering and interactions of specific data:

• vtkIsosurfaceManager takes as input avtkImageData and generates one isosurface per label (the
number and value of labels is automatically determined). This class uses avtkContourFilter
to generate the contours, avtkDecimatePro filter to decimate the polygons up to 90%
of the original number, and avtkSmoothPolyDataFilter to smooth the final mesh. A
vtkLookupTable controls the color and opacity of each isosurface. An example can be found
in Example/IsosurfacesManager/IsosurfacesManager.cxx: It renders a segmentation of the
BrainWeb in a few lines of code (Fig.3 left):

6

Figure 2: Snapshot of the ImageViewerapplication built with vtkINRIA3D. The snapshot represents the preview

screen, where each loaded image is displayed, and interactions on windows are synchronized.

vtkIsosurfaceManager* manager = vtkIsosurfaceManager::New();
manager->SetRenderWindowInteractor (iren);
manager->SetInput (segmentation);
manager->GenerateData();
manager->SetOpacity (0.5);

• vtkTensorVisuManager takes as input avtkStructuredPoints and renders the tensor data by
extracting a slice in each of the orthogonal directions (axial, sagittal and coronal), just like 3D
MPR image visualization does. Several glyph representations are available: ellipsoid, line, ar-
row, disk, cylinder, cube and even superquadric. The color coding of the glyphs can be set to
either use a scalar value and a user-provided look-up table, a specific eigenvalue or eigenvec-
tor weighted by the fractional anisotropy as it is done in DT-MRI. Finally, the resolution and
sampling of the glyphs can be controlled to fasten the rendering. An example can be found in
Examples/TensorManager/TensorManager.cxx. Fig. 3 right was produced using the following
lines of code:

vtkTensorManager* manager = vtkTensorManager::New();
manager->SetRenderWindowInteractor (iren);
manager->SetInput (tensors);
manager->SetGlyphShapeToCube();
manager->ResetPosition();
manager->Update()

• vtkFibersManager is a class that was first developed to interact with thousands VTK polylines pro-
duced in DT-MRI tractography: each line represents a single white matter fiber. The main contribution
is the use of avtkBoxWidget to limit the visualization to fibers that go through the box. The box can
be scaled and translated. Extracted polylines can be displayed either by lines, ribbons or tubes. Re-
cursive exploration of fibers is possible, i.e., one can take the subset of fibers currently displayed as
a new starting point for exploration, and so on, to extract a fiber bundle of interest for example. An
example can be found inExamples/FibersManager/FibersManager.cxx, and the sample of the
code that generated Fig.4 left is given below:

7

Figure 3: The left image was produced with the example in Example/IsosurfacesManager/IsosurfacesManager.cxx

The right image was produced with the example in Examples/TensorManager/TensorManager.cxx. The test data

are provided with vtkINRIA3D (image from BrainWeb, segmentation courtesy of Olivier Clatz, Ph.D.).

vtkFibersManager* manager = vtkFibersManager::New();
manager->SetRenderWindowInteractor (iren);
manager->SetInput (fibers);
manager->BoxWidgetOn();

• ThevtkCompareImageManager takes two images as input and fuse them into a single image. Two
fuse modes are available. The first one uses avtkImageBlend to blend the two inputs accord-
ing to an alpha parameter controlled by the user. The second one uses avtkImageCheckerboard
whose number of divisions is also controlled by the user. An example can be found in
Examples/CompareImageManager/CompareImageManager.cxx. and is briefly described below
(with Fig. 4 right):

vtkCompareImageManager* manager = vtkCompareImageManager::New();
manager->SetInput1 (image1);
manager->SetInput2 (image2);
manager->SetComparisonMode (vtkCompareImageManager::COMPARE_GRID);
manager->SetNumberOfDivisions (10, 10, 10);
manager->GenerateData();

• vtkLookupTableManager is a simple but useful class that provides the user with some of the standard
vtkLookupTable: Black&White, Hot Metal, Full Spectrum, etc.

To conclude, thevtkVisuManagement library is a combination of some of the VTK classes into new classes
that simplify the incorporation of complex data manipulation and visualization into homemade softwares.

We propose in the next section an original way of managing VTK data, which facilitates input, output,
memory allocation, and which also supports temporal sequences of data.

4 The vtkDataManagement Library

VTK provides classes for the manipulation of various types of data, such as polygonal data (vtkPolyData),
unstructured grids (vtkUnstructuredGrid) and images (vtkImageData), all deriving from the base class

4.1 The vtkDataManager and the vtkMetaDataSet Classes 8

Figure 4: The left image was produced with the example in Examples/FibersManager/FibersManager.cxx The

right image was produced with the example in Examples/CompareImageManager/CompareImageManager.cxx.

vtkDataSet. From a developer point of view, it would be interesting to have the possibility to:

1. Use and display any of these datasets with minimal effort,

2. Have access to each individual dataset, process it, and observe the result directly,

3. Be able to work with time-sequences, i.e., a sequence of objects of the same type describing a process
evolving with time (e.g., cardiac imaging).

The libraryvtkDataManagement is a concrete implementation of these requirements and allows to rapidly
and simply integrate a visualization system into a program. It consists of two main components:

• The classvtkDataManager is the core of the library. This class is the interface class between any
vtkDataSet and the developer. It can be seen as a container for VTK objects.

• The classvtkMetaDataSet (and its derived classes). This class extends thevtkDataSet class by
adding new methods and attributes, such as Input/Output, time flag, etc.

In the following, we first start by describing the two main components of the library, and then give more
details on how time-sequences are supported in thevtkDataManagement library.

4.1 The vtkDataManager and the vtkMetaDataSet Classes

The purpose of the classvtkDataManager is to handle spatiotemporal data. It is basically a container for
severalvtkDataSets, and simplifies their creation (allocation) and manipulation by providing convenient
methods such as read, write, and access. Moreover, it is able to automatically detect and create the right type
of data when reading. An example of how to use this manager is given in folderExamples/DataManager/,
illustrated in Fig.7 and given in appendixA.2.

As shown in Figure5, thevtkDataManager does not support directly instances of the classvtkDataSet
but of the classvtkMetaDataset instead. The classvtkMetaDataset not only contains a reference to

4.1 The vtkDataManager and the vtkMetaDataSet Classes 9

Figure 5:Left: The principal members of the class vtkDataManager. It contains a list of vtkMetaDataSet. Calling

ReadFile() opens a file, creates the correct type of dataset, and adds it to its list. Calling ScanDirectory() performs

a full scan of a directory, adds any available dataset to its list. GetMetaDataSet() allows to access any item of the list.

Right: Principal members and methods of vtkMetaDataSet. This base class carries a vtkDataSet and some extra

attributes, like a name, a vtkProperty and a time flag. I/O methods are provided. A concrete example can be found

in Examples/DataManager/DataManager.cxx and is described in Sec. A.2.

a vtkDataSet instance (accessible by the functionGetDataSet()), but it also provides extra attributes
like a name, a time flag (used for time support, see Sec.4.2) or a vtkProperty to be shared by several
representations of the same dataset. From this base class derive four other classes:

• The classvtkMetaImageData represents avtkImageData. It provides input/output methods using
the ITK I/O factory mechanism, thus supporting a large spectrum of medical image formats. Calling
GetDataSet() returns an instance ofvtkImageData.

• The classvtkMetaSurfaceMesh carries avtkPolyData object. It uses the input/output methods of
VTK. Calling GetDataSet() returns an instance ofvtkPolyData.

• The classvtkMetaVolumeMesh supportsvtkUnstructuredGrid objects. The input/output functions
are those of VTK. CallingGetDataSet() returns an instance ofvtkUnstructuredGrid.

• The classvtkMetaDataSetSequence carries severalvtkMetaDataSet of the same type (i.e., several
vtkMetaImageData for instance). It allows to handle a temporal sequence of datasets. More details
on this class can be found in Sec.4.2. CallingGetDataSet() returns an instance ofvtkImageData,
vtkPolyData or vtkUnstructuredGrid depending on the type of the sequence (the type is deter-
mined by the first object inserted).

One last important feature is that for eachvtkMetaDataSet, a list ofvtkActor can be set as attributes. This
is useful when synchronizing different representations of the same data. For example, one could imaging
visualizing a mesh of the heart in both 3D and 2D using the libraryvtkRenderingAddOn: the mesh is cut to
the current image slice displayed by avtkViewImage2D. Then, one would like to color code the mesh by a
field array. Instead of accessing each instance ofvtkActor individually (the 3D and 2D actors in this case),
getting theirvtkMapper and calling the appropriate method (hereColorByArray()), one can pass once for
all the generated actors to the corresponding meta dataset, and call this same method from the meta dataset
directly if it exists: all actors will be updated with one function call.

In the following, we give an in-depth description of the time support in thevtkDataManagement library.

4.2 Time Support 10

Figure 6:Hierarchy of the base class vtkMetaDataSet and its derived classes.

4.2 Time Support

Time support is achieved through the class calledvtkMetaDataSetSequence. Basically, this class derives
from avtkMetaDataSet (Fig. 6 left) so that it is considered as a regular dataset by thevtkDataManager.
The difference resides in the fact that it has a list ofvtkMetaDataSet as attribute. When a sequence is
read (via theRead() function which takes in this case a directory as parameter, and not a single file name),
datasets are read and stored in its list according to their time flag. Then, thevtkDataSet member inherited
from its base class (vtkMetaDataSet) is used as a buffer: the object is created (the memory address is
set once for all), and the members (like point data, polygonal data, scalar arrays) will point towards the
requested time point when the methodUpdateToTime(double) is called (Fig.8). Thus, no object is copied
whenUpdateToTime() is called (optimal memory use), and only thevtkMetaDataSet that serves as an
interface will have its attributes changed. However, no temporal interpolation is made when the requested
time point is not available in the list. Instead, the nearest temporal neighbor is chosen. This prevents memory
copies but may not be the best solution when time points of the sequence are not regularly sampled: temporal
interpolation would be necessary in this case and is part of the future work.

Several time sequences can be synchronized via thevtkDataManager by calling the function
UpdateSequencesToTime(double time). This is a very desirable feature in cardiac simulation, when

Figure 7: An example of the vtkDataManager in use. Left: A panel (built in KWWidget) summarizes the

vtkDataManager content. The selected data are rendered in the 3D view on the right. The meshes here come

from a heart segmentation (data courtesy of Thomas Mansi).

11

Figure 8:Structure of the vtkMetaDataSetSequence class. After adding several vtkMetaDataSets to this class with

AddMetaDataSet() or Read(), the user may call UpdateToTime(double time) to see the attributes of the output

dataset (GetDataSet()) change according to the requested time point. Attributes that are passed to the buffer vary

with the type of vtkMetaDataSet. For instance, point coordinates and cell data are passed for a polygonal object while

point scalars are passed for an image object.

an image plus a corresponding mesh sequence of the heart are displayed simultaneously.

The support of time sequences was very recently introduced in VTK, after the creation of the
vtkDataManagement library. As the functionalities are not completely similar we chose to keep on de-
veloping our approach. However, the possibility to fuse with the latest VTK developments is still open.

5 Applications

We briefly describe in this section two applications that use vtkINRIA3D, VTK and ITK. The first one, called
MedINRIA, is a collection of softwares for medical image processing and visualization and is dedicated to
clinicians. The second one, calledCardioViz3D, targets research in cardiac imaging.

5.1 MedINRIA

MedINRIA consists of a set of programs, each of them being dedicated to a specific application or MRI
modality. For instance, a first application calledDTI Trackprovides a processing and visualization pipeline
for DT-MRI using Log-Euclidean metrics [5]. RegistrationToolallows to perform from manual rigid to
fully automatic non-linear registration using state-of-the-art methods [8]. Other applications include a semi-
automatic segmentation of MS lesions and a simple yet powerfulImageViewer.

It uses wxWidgets [3] for the user interface. wxWidgets has a proper interface with VTK
(http://wxvtk.sourceforge.net) that we slightly modified and included invtkINRIA3D.

MedINRIA is partly open-source, and binaries for Windows, Linux and MacOSX are freely available at:
http://www-sop.inria.fr/asclepios/software/MedINRIA. The source of theImageViewerapplica-
tion comes withvtkINRIA3D. Figure9 left showsDTI Track running. A documentation is available on the
same web site, as well as a set of test data.

5.2 CardioViz3D

CardioViz3D targets research in cardiac imaging. It is funded by the CardioSense3D project
(http://www-sop.inria.fr/CardioSense3D) and aims at providing researchers with a set of tools for

12

Figure 9:MedINRIA and CardioViz3D: Two applications built upon vtkINRIA3D. Left: MedINRIA running the applica-

tion DTI Trackwith fiber bundles extracted from DT-MRI. Right: CardioViz3D is used to visualize the result of a cardiac

simulation: a model of the heart is displayed in 3D (bottom right window) and in three 2D orthogonal views. The color

codes for the propagation of the action potential.

the processing, simulation and visualization of cardiac data. At the current state of development (v. 1.2.7),
the software proposes a visualization system of cardiac images and meshes, and supports time sequences.

CardioViz3D is built with ITK, VTK, vtkINRIA3D and KWWidgets [1]. The use of KWWidgets gives the
possibility to researchers to write and run tcl scripts.

CardioViz3D is partly open-source, and a release of a beta version for Windows, linux and MacOSX is
available athttps://gforge.inria.fr/projects/cardioviz3d/. The core of CardioViz3D, called
KWAddOn, is given with the source code ofvtkINRIA3D.

6 Conclusions and Future Work

This paper presentsvtkINRIA3D, a collection of new VTK classes to handle spatiotemporal datasets in
terms of synchronization, visualization, and management. Practically, it consists of three libraries. First, the
vtkRenderingAddOn library implements a strategy of synchronization of interactions and visualization of
severalvtkRenderWindow. It also provides a 2D and 3D visualization pipeline for volumes, with the possi-
bility to use a 2D tracer and create interactively volume of interests in 3D. Second, thevtkVisuManagement
library’s goal is to facilitate the creation of complex visualization and interaction systems of datasets. It
concerns tensor fields, large sets ofvtkPolyLines (as produced in DT-MRI tractography), isosurfaces, and
images. Third, thevtkDataManagement library aims at providing a single container of objects in an ap-
plication to easily manage creation, deletion, and organization of datasets. Moreover, it supports temporal
sequences of any type of data, e.g., images or polygonal data. Finally, we briefly described two applica-
tions based uponvtkINRIA3D: MedINRIA, a set of softwares for medical image processing with a clear user
interface, andCardioViz3Da research software dedicated to cardiac imaging.

Future developments include new synchronized methods between views (such as the synchronization of 3D
cameras), visualization techniques of other complex data (like ordinary distribution function as obtained in
Q-ball imaging [7]), and temporal interpolation of datasets using the recent classes developed in VTK.

vtkINRIA3D is open-source, freely available athttp://www-sop.inria.fr/asclepios/software/vtkINRIA3D.

13

A set of examples and test data can be downloaded as well.

A Examples

A.1 SynchronizedViews

The source code for this example can be found inExamples/SynchronizedViews/SynchronizedViews.cxx.
The goal of this example is to synchronize the visualization of an image, i.e., synchronize the navigation into
the slices and the window/level for contrast adjustment. We use subclasses ofvtkView: vtkViewImage2D
for 2D visualization andvtkViewImage3D and 3D visualization:

#include <vtkViewImage2D.h>
#include <vtkViewImage3D.h>

We create four of these: threevtkViewImage2D (one axial, sagittal and coronal view) and one 3D view of
the image. The creation of one of thevtkViewImage2D is given below:

vtkViewImage2D* view1 = vtkViewImage2D::New();
vtkRenderWindowInteractor* iren1 = vtkRenderWindowInteractor::New();
vtkRenderWindow* rwin1 = vtkRenderWindow::New();
vtkRenderer* renderer1 = vtkRenderer::New();
iren1->SetRenderWindow (rwin1);
rwin1->AddRenderer (renderer1);
view1->SetRenderWindow (rwin1);
view1->SetRenderer (renderer1);

We now set some properties for the 2D/3D views: orientation, type of interaction, background color, etc.:

view1->SetInteractionStyle (vtkViewImage2D::SELECT_INTERACTION); // navigate through the
slices with the mouse
view1->SetOrientation (vtkViewImage2D::AXIAL_ID);
view1->SetBackgroundColor (0.0,0.0,0.0);
view1->SetAboutData ("Powered by vtkINRIA3D");

view4->SetRenderingModeToPlanar();
view4->SetCubeVisibility(1); // orientation cube

We finally link the views together for synchronization:

// view1 transmits to view2 which transmits to view3, etc.
view1->AddChild (view2);
view2->AddChild (view3);
view3->AddChild (view4);
view4->AddChild (view1);

When the program exits, or whenever one want to delete a view, one should call the methodDetach(), so
the synchronization mechanism is not stopped:

// Before exiting and deleting the VTK objects
view1->Detach();
view2->Detach();
view3->Detach();
view4->Detach();

A.2 The Data Manager 14

A.2 The Data Manager

This example shows how to use thevtkDataManager class. The source code for this section can be found in
Examples/DataManager/DataManager.cxx. This example scans a directory, reads any dataset available
in it, and renders all of them in avtkView. It shows how to scan a directory for a time sequence.

#include <vtkViewImage2D.h>
#include <vtkDataManager.h>
#include <vtkMetaImageData.h>
#include <vtkMetaSurfaceMesh.h>
#include <vtkMetaVolumeMesh.h>
#include <vtkMetaDataSetSequence.h>

We set the vtkView (visualization pipeline):

vtkViewImage3D* view = vtkViewImage3D::New();
vtkRenderWindowInteractor* iren = vtkRenderWindowInteractor::New();
vtkRenderWindow* rwin = vtkRenderWindow::New();
vtkRenderer* renderer = vtkRenderer::New();

iren->SetRenderWindow (rwin);
rwin->AddRenderer (renderer);
view->SetRenderWindow (rwin);
view->SetRenderer (renderer);

view->SetRenderingModeToPlanar();
view->SetCubeVisibility(1);
view->SetAboutData ("Powered by vtkINRIA3D");

We allocate avtkDataManager and scan the user-provided directory:

vtkDataManager* DataManager = vtkDataManager::New();
DataManager->ScanDirectory(directoryname.c_str());

For reading a time sequence of data, we replace the above last line of code by:

DataManager->ScanDirectoryForSequence(directoryname.c_str());

Then we just need to add the datasets in the view:

for (unsigned int i=0; i<DataManager->GetNumberOfMetaDataSet(); i++)
{

vtkMetaDataSet* metadataset = DataManager->GetMetaDataSet (i);
vtkProperty* prop = vtkProperty::SafeDownCast(metadataset->GetProperty());
view->AddDataSet (metadataset->GetDataSet(), prop);

}

Note that playing the sequence is done by callingDataManager->UpdateSequencesToTime() in a loop.
It can be done in real time thanks to avtkTimerLog.

References 15

References

[1] KWWidgets. http://www.kwwidgets.org/.5.2

[2] VTK: The visualization toolkit. http://www.vtk.org.1

[3] wxWidgets. http://www.wxwidgets.org.2, 5.1

[4] P. Basser, J. Mattiello, and D. Le Bihan. MR diffusion tensor spectroscopy and imaging.Biophysical
Journal, 66:259–267, 1994.1

[5] Pierre Fillard, Vincent Arsigny, Xavier Pennec, and Nicholas Ayache. Clinical DT-MRI estimation,
smoothing and fiber tracking with Log-Euclidean metrics.IEEE Transactions on Medical Imaging,
2007. In Press.5.1

[6] L. Ibanez, W. Schroeder, L. Ng, and J. Cates.The ITK Software Guide. Kitware, Inc. ISBN 1-930934-
10-6, http://www.itk.org/ItkSoftwareGuide.pdf, first edition, 2003.2

[7] D. Tuch. Q-ball imaging.MRM, 52:1358–1372, 2004.6

[8] Tom Vercauteren, Xavier Pennec, Aymeric Perchant, and Nicholas Ayache. Non-parametric diffeomor-
phic image registration with the demons algorithm. InProc. of MICCAI’07, 2007. In press.5.1

vtkINRIA3D: A VTK Extension for
Spatiotemporal Data Synchronization,

Visualization and Management
Release 1.50

Nicolas Toussaint1, Maxime Sermesant1 and Pierre Fillard1

August 7, 2007

1INRIA Sophia Antipolis, Asclepios Project-Team, France

Abstract

This paper presents an extension of the Visualization ToolKit dedicated to spatiotemporal data syn-
chronization, visualization and management. It basically consists in a versatile library providing func-
tionalities to help developers setting up sophisticated applications with minimal development effort.
In the medical imaging context, various types of data are often encountered, which raises the need
for adapted visualization and synchronization techniques. Moreover, the management of these data
(organization, creation, deletion, access) can become a burden. We propose in vtkINRIA3D a strat-
egy to synchronize interactions between datasets representations, to manipulate complex objects (e.g.,
neural fibers as obtained in DT-MRI), as well as a managing framework for organizing data (includ-
ing temporal sequences). The efficiency of vtkINRIA3D is illustrated with two applications: Med-
INRIA (general medical image processing software) and CardioViz3D (cardiac image visualization).
vtkINRIA3D is open-source, and comes with a set of examples, test data and softwares built upon it:
http://www-sop.inria.fr/asclepios/software/vtkINRIA3D.

Contents

1 Introduction 2

2 The vtkRenderingAddOn Library 3

3 The vtkVisuManagement Library 5

4 The vtkDataManagement Library 7
4.1 The vtkDataManager and the vtkMetaDataSet Classes. 8
4.2 Time Support .10

5 Applications 11
5.1 MedINRIA .11
5.2 CardioViz3D .11

6 Conclusions and Future Work 12

2

A Examples 13
A.1 SynchronizedViews. .13
A.2 The Data Manager .14

1 Introduction

The Visualization ToolKit (VTK) [2] offers an impressive set of comprehensive C++ classes for data repre-
sentation and manipulation, and has become a standard in scientific visualization. Not only VTK provides
state-of-the-art techniques for processing datasets and displaying meaningful information from them, but it
also eases a lot the developer’s pain by the object-oriented programming and clarity of the coding.

In medical image processing and visualization, one often has to deal with very specific types of data that
require specialized visualization and interaction techniques. Moreover, the management of all these data by
programmers who want to build a complete processing and visualization system can be a challenging task,
due to the various forms they can take, and to the specific visualization strategies they require. In order to
provide a more straightforward approach, we thought of three important features:

• Synchronization of interactions and visualization among windows. For instance, when one clicks on
a window to position an axis in a slice of a 3D volume, one would like to have the other windows
displaying this data (if any) to automatically set their axis at the exact same position. This feature is
very desirable when comparing images or when looking at a 3D volume with different orientations.
Another example is when one adjusts the contrast of a view: one would like the other views to adjust
their contrast similarly.

• Adapted manipulation of complex data coming from the increasing diversification of the source of
medical information. For instance, diffusion tensor MRI (DT-MRI or DTI) [4] is a very attractive
modality since it allows to reconstruct white matter fibers from several MR measurements. Up to
several thousands of fibers can be reconstructed, and obviously it requires adapted visualization and
interaction techniques to give medical experts the chance to extract a specific fiber bundle of interest.

• Simple and efficient management of these data for programmers. In particular, we thought interesting
to have a single object that reads, writes, allocates and deletes any sort of dataset (images, meshes,
neural fibers, etc.), so that a complete visualization system of any type of data could be easily plugged
in a homemade program. Moreover, support of temporal sequences of these data is extremely desir-
able, especially in cardiac research.

ThevtkINRIA3D library is a concrete implementation of these features. There are numerous visualization
projects built around VTK and ITK (Slicer, MITK,...) but the aim ofvtkINRIA3D is to make available
a simple and versatile library providing the described features and allowing developers to build their own
software upon it. This is why it is basically an extension of VTK, i.e. a collection of new classes based on
the VTK architecture.vtkINRIA3D is divided into three libraries following the three points presented above:

• ThevtkRenderingAddOn library (Sec.2) implements a strategy for synchronization of visualization
and interactions among windows.

3

• The vtkVisuManagement library (Sec.3) provides a set of classes that manages the visualization,
interaction, ROI extraction of certain type of data, like tensor fields, VTK polylines, and isosurfaces.

• ThevtkDataManagement library (Sec.4) offers a framework to handle heterogeneousvtkDataSet
objects by federating them into a single class namedvtkDataManager and supporting time sequences
of these objects.

In addition, we briefly present in Sec.5 two softwares based onvtkINRIA3D: MedINRIA, which is a collec-
tion of graphic tools targetting the clinicians, andCardioViz3D, a platform for the processing and visualiza-
tion of cardiac imaging.

Requirements:vtkINRIA3D is compiled withVTK 5.0.3, ITK 3.2.0 (for some optional components),
CMake 2.4.6, and is open-source. Source code, doxygen files, dashboard, and examples data can be found
at: http://www-sop.inria.fr/asclepios/software/vtkINRIA3D.

2 The vtkRenderingAddOn Library

The main purpose of the vtkRenderingAddOn library is to provide a framework to synchronize user inter-
actions on avtkRenderWindow. To do so, a cycled-tree structure is used. The base class,vtkView, is fed
with avtkRenderer, vtkRenderWindow and avtkRenderWindowInteractor to display and interact with
vtkActors. It has also a uniqueParent (of the same type) and a set of children (of the same type as well).
Then, when a synchronized method is called, the calledvtkView transmits it to its children and so on. As
this is a cycled structure, one should be careful that the first calling object is not called again, which would
result in an infinite loop. To prevent this undesirable behavior, we implemented aLock() andUnLock()
methods that eachvtkView must call before and after calling its children’s method.

The classvtkView implements this strategy for the synchronization of user interactions. However, it does
not provide any concrete feature, as this base class should remain as generic as possible. A concrete im-
plementation is given by classesvtkViewImage2D andvtkViewImage3D which derive from the base class
vtkViewImage (which itself derives fromvtkView). The classvtkViewImage is the interface class for the
functions shared by any view that displays an image. The specificity ofvtkViewImage2D is to display an
image slice by slice, whilevtkViewImage3D displays an image in 3D using either multi-planar reconstruc-
tion (MPR) or volume rendering (VR) techniques. Moreover, in VR, avtkBoxWidget allows the user to
remove a volume of interest from the displayed image. This gives for instance a rapid insight into a patient’s
brain and is a very desirable feature. The methods that can be synchronized are:

• Adjust Window/Level:SyncSetWindow(), SyncSetLevel();

• Set the position:SyncSetPosition();

• Set a lookup table (SyncSetLookupTable()), a mask image (or ROI) (SyncSetMaskImage()), a
vtkDataset (SyncAddDataSet()), or avtkPolyData (SyncAddPolyData());

Notice that all synchronized functions start bySync. Naturally, the “desynchronized” version of the same
function has the same name withoutSync, like SyncSetWindow() andSetWindow(). We illustrate the
synchronization mechanism with the methodSyncSetColorWindow(double w):

void vtkViewImage::SyncSetColorWindow (double w)
{

4

if(!this->IsLocked())
{

this->SetWindow (w); // actually change the window

// The current view is now locked to prevent it to be called again and again...
this->Lock();
for(unsigned int i=0; i<this->Children.size(); i++)
{

vtkViewImage* view = dynamic_cast<vtkViewImage*> (this->Children[i]);
if(view)
{
view->SetColorWindow (w);
view->Render();

}
}
this->UnLock();

}
}

Obviously, the effect of the synchronized methods will be different depending on the implementation made
in each class. For example, callingSyncSetPosition() on avtkViewImage2D object will place 2D cursors
on the exact required position, while avtkViewImage3D object will intersect the 3 orthogonal planes at this
position when MPR is selected, or position a 3D cursor at the exact same coordinate when VR is activated.
Note that the two last methods (SyncAddDataSet() andSyncAddPolyData()) are particularly interesting
since they allow to project anyvtkDataSet (and derived classes) onto the 2D views: a slice of the dataset
is extracted using either avtkCutter (SyncAddDataSet()) or avtkClipDataSet (SyncAddPolyData()).
The former cuts the dataset with the current image slice, i.e., it returns the intersection of the dataset with a
plane defined by the current slice displayed. As a consequence, it turns a N-Dimensional dataset into a N-
1-Dimensional dataset (e.g., lines become points). The later extracts the polygonal data contained between
two planes defined by the current image slice plus a user-provided thickness (generally the spacing between
two consecutive slices). This has the advantage to preserve the dimensionality of the data (lines are still
lines).

Extra classes are provided for further interactions: the classvtkViewImage2DWithTracer allows to man-
ually trace on a 2D slice (using the VTK classvtkImageTracerWidget) and to transform the trac-
ing into a binary image itself overlapped onto the views (and synchronized among them). The class
vtkViewImage2DWithOrientedPoint gives the possibility to place a point and a direction on a slice to
perform for instance a manual rigid transformation of this image.

When the user wants to remove a view from the tree, he should call the methodDetach(): it alerts the
Parent’s view that it is detaching and connects its ownChildren to its Parent’s ones. This prevents any
loss in the synchronization mechanism (Fig.1 left and middle). Moreover, when a view is ”re-parented”
(case ofView4 on Fig.1 right), itsParent is automatically alerted and the detaching object is automatically
removed from theChildren list of its Parent. This insures that a view is the child of only one view, thus
preventing to be called several times by severalParents.

An example of how to use these synchronized views is given in the folderExample/SynchronizedViews
and described in AppendixA.1.

We included invtkINRIA3D the source of a software, calledImageViewer, that uses the synchronized views
described above (see Fig.2). Moreover, it offers some interesting features that are not present in many
medical image visualization softwares:

5

Initial Tree After View2->Detach() After View3->AddChild(View4)

Figure 1: Left: Initial tree. Four views are linked: View1 has child View2, View2 has children View3 and View4,

and View4 is linked back to View1. View3 has no child, meaning that it can only receive function calls but not transmit

any. Middle: When one wants to remove a view, one should call the method Detach(): View2->Detach() in this

example. This results in the removal of View2, but View2’s Parent is automatically re-linked to its children, avoiding

a loss in the synchronization of the remaining views. Right: We now want to link View3 with View4. In that case,

View4’s parent is informed that it lost a child, thus preventing a single view to be the child of several others (then

preventing to receive multiple function calls from their parents).

• Full DICOM support using ITK I/O factory mechanism [6];

• Tab-browsing of images;

• A preview screen (Fig.2) to compare images: interactions can be synchronized, which allows to
interact with many images by acting on only one of them;

The user-interface ofImageVieweris made inwxWidgets [3] in order to be integrated inMedINRIA(more
details can be found in Sec.5.1).
The next section depicts a library specialized in visualization of various data.

3 The vtkVisuManagement Library

The flavor of this library is to facilitate the task of programmers who want to quickly integrate nice visual-
ization and interactions of scientific data into their software. This library is composed of a set of classes,
each of them handling the rendering and interactions of specific data:

• vtkIsosurfaceManager takes as input avtkImageData and generates one isosurface per label (the
number and value of labels is automatically determined). This class uses avtkContourFilter
to generate the contours, avtkDecimatePro filter to decimate the polygons up to 90%
of the original number, and avtkSmoothPolyDataFilter to smooth the final mesh. A
vtkLookupTable controls the color and opacity of each isosurface. An example can be found
in Example/IsosurfacesManager/IsosurfacesManager.cxx: It renders a segmentation of the
BrainWeb in a few lines of code (Fig.3 left):

6

Figure 2: Snapshot of the ImageViewerapplication built with vtkINRIA3D. The snapshot represents the preview

screen, where each loaded image is displayed, and interactions on windows are synchronized.

vtkIsosurfaceManager* manager = vtkIsosurfaceManager::New();
manager->SetRenderWindowInteractor (iren);
manager->SetInput (segmentation);
manager->GenerateData();
manager->SetOpacity (0.5);

• vtkTensorVisuManager takes as input avtkStructuredPoints and renders the tensor data by
extracting a slice in each of the orthogonal directions (axial, sagittal and coronal), just like 3D
MPR image visualization does. Several glyph representations are available: ellipsoid, line, ar-
row, disk, cylinder, cube and even superquadric. The color coding of the glyphs can be set to
either use a scalar value and a user-provided look-up table, a specific eigenvalue or eigenvec-
tor weighted by the fractional anisotropy as it is done in DT-MRI. Finally, the resolution and
sampling of the glyphs can be controlled to fasten the rendering. An example can be found in
Examples/TensorManager/TensorManager.cxx. Fig. 3 right was produced using the following
lines of code:

vtkTensorManager* manager = vtkTensorManager::New();
manager->SetRenderWindowInteractor (iren);
manager->SetInput (tensors);
manager->SetGlyphShapeToCube();
manager->ResetPosition();
manager->Update()

• vtkFibersManager is a class that was first developed to interact with thousands VTK polylines pro-
duced in DT-MRI tractography: each line represents a single white matter fiber. The main contribution
is the use of avtkBoxWidget to limit the visualization to fibers that go through the box. The box can
be scaled and translated. Extracted polylines can be displayed either by lines, ribbons or tubes. Re-
cursive exploration of fibers is possible, i.e., one can take the subset of fibers currently displayed as
a new starting point for exploration, and so on, to extract a fiber bundle of interest for example. An
example can be found inExamples/FibersManager/FibersManager.cxx, and the sample of the
code that generated Fig.4 left is given below:

7

Figure 3: The left image was produced with the example in Example/IsosurfacesManager/IsosurfacesManager.cxx

The right image was produced with the example in Examples/TensorManager/TensorManager.cxx. The test data

are provided with vtkINRIA3D (image from BrainWeb, segmentation courtesy of Olivier Clatz, Ph.D.).

vtkFibersManager* manager = vtkFibersManager::New();
manager->SetRenderWindowInteractor (iren);
manager->SetInput (fibers);
manager->BoxWidgetOn();

• ThevtkCompareImageManager takes two images as input and fuse them into a single image. Two
fuse modes are available. The first one uses avtkImageBlend to blend the two inputs accord-
ing to an alpha parameter controlled by the user. The second one uses avtkImageCheckerboard
whose number of divisions is also controlled by the user. An example can be found in
Examples/CompareImageManager/CompareImageManager.cxx. and is briefly described below
(with Fig. 4 right):

vtkCompareImageManager* manager = vtkCompareImageManager::New();
manager->SetInput1 (image1);
manager->SetInput2 (image2);
manager->SetComparisonMode (vtkCompareImageManager::COMPARE_GRID);
manager->SetNumberOfDivisions (10, 10, 10);
manager->GenerateData();

• vtkLookupTableManager is a simple but useful class that provides the user with some of the standard
vtkLookupTable: Black&White, Hot Metal, Full Spectrum, etc.

To conclude, thevtkVisuManagement library is a combination of some of the VTK classes into new classes
that simplify the incorporation of complex data manipulation and visualization into homemade softwares.

We propose in the next section an original way of managing VTK data, which facilitates input, output,
memory allocation, and which also supports temporal sequences of data.

4 The vtkDataManagement Library

VTK provides classes for the manipulation of various types of data, such as polygonal data (vtkPolyData),
unstructured grids (vtkUnstructuredGrid) and images (vtkImageData), all deriving from the base class

4.1 The vtkDataManager and the vtkMetaDataSet Classes 8

Figure 4: The left image was produced with the example in Examples/FibersManager/FibersManager.cxx The

right image was produced with the example in Examples/CompareImageManager/CompareImageManager.cxx.

vtkDataSet. From a developer point of view, it would be interesting to have the possibility to:

1. Use and display any of these datasets with minimal effort,

2. Have access to each individual dataset, process it, and observe the result directly,

3. Be able to work with time-sequences, i.e., a sequence of objects of the same type describing a process
evolving with time (e.g., cardiac imaging).

The libraryvtkDataManagement is a concrete implementation of these requirements and allows to rapidly
and simply integrate a visualization system into a program. It consists of two main components:

• The classvtkDataManager is the core of the library. This class is the interface class between any
vtkDataSet and the developer. It can be seen as a container for VTK objects.

• The classvtkMetaDataSet (and its derived classes). This class extends thevtkDataSet class by
adding new methods and attributes, such as Input/Output, time flag, etc.

In the following, we first start by describing the two main components of the library, and then give more
details on how time-sequences are supported in thevtkDataManagement library.

4.1 The vtkDataManager and the vtkMetaDataSet Classes

The purpose of the classvtkDataManager is to handle spatiotemporal data. It is basically a container for
severalvtkDataSets, and simplifies their creation (allocation) and manipulation by providing convenient
methods such as read, write, and access. Moreover, it is able to automatically detect and create the right type
of data when reading. An example of how to use this manager is given in folderExamples/DataManager/,
illustrated in Fig.7 and given in appendixA.2.

As shown in Figure5, thevtkDataManager does not support directly instances of the classvtkDataSet
but of the classvtkMetaDataset instead. The classvtkMetaDataset not only contains a reference to

4.1 The vtkDataManager and the vtkMetaDataSet Classes 9

Figure 5:Left: The principal members of the class vtkDataManager. It contains a list of vtkMetaDataSet. Calling

ReadFile() opens a file, creates the correct type of dataset, and adds it to its list. Calling ScanDirectory() performs

a full scan of a directory, adds any available dataset to its list. GetMetaDataSet() allows to access any item of the list.

Right: Principal members and methods of vtkMetaDataSet. This base class carries a vtkDataSet and some extra

attributes, like a name, a vtkProperty and a time flag. I/O methods are provided. A concrete example can be found

in Examples/DataManager/DataManager.cxx and is described in Sec. A.2.

a vtkDataSet instance (accessible by the functionGetDataSet()), but it also provides extra attributes
like a name, a time flag (used for time support, see Sec.4.2) or a vtkProperty to be shared by several
representations of the same dataset. From this base class derive four other classes:

• The classvtkMetaImageData represents avtkImageData. It provides input/output methods using
the ITK I/O factory mechanism, thus supporting a large spectrum of medical image formats. Calling
GetDataSet() returns an instance ofvtkImageData.

• The classvtkMetaSurfaceMesh carries avtkPolyData object. It uses the input/output methods of
VTK. Calling GetDataSet() returns an instance ofvtkPolyData.

• The classvtkMetaVolumeMesh supportsvtkUnstructuredGrid objects. The input/output functions
are those of VTK. CallingGetDataSet() returns an instance ofvtkUnstructuredGrid.

• The classvtkMetaDataSetSequence carries severalvtkMetaDataSet of the same type (i.e., several
vtkMetaImageData for instance). It allows to handle a temporal sequence of datasets. More details
on this class can be found in Sec.4.2. CallingGetDataSet() returns an instance ofvtkImageData,
vtkPolyData or vtkUnstructuredGrid depending on the type of the sequence (the type is deter-
mined by the first object inserted).

One last important feature is that for eachvtkMetaDataSet, a list ofvtkActor can be set as attributes. This
is useful when synchronizing different representations of the same data. For example, one could imaging
visualizing a mesh of the heart in both 3D and 2D using the libraryvtkRenderingAddOn: the mesh is cut to
the current image slice displayed by avtkViewImage2D. Then, one would like to color code the mesh by a
field array. Instead of accessing each instance ofvtkActor individually (the 3D and 2D actors in this case),
getting theirvtkMapper and calling the appropriate method (hereColorByArray()), one can pass once for
all the generated actors to the corresponding meta dataset, and call this same method from the meta dataset
directly if it exists: all actors will be updated with one function call.

In the following, we give an in-depth description of the time support in thevtkDataManagement library.

4.2 Time Support 10

Figure 6:Hierarchy of the base class vtkMetaDataSet and its derived classes.

4.2 Time Support

Time support is achieved through the class calledvtkMetaDataSetSequence. Basically, this class derives
from avtkMetaDataSet (Fig. 6 left) so that it is considered as a regular dataset by thevtkDataManager.
The difference resides in the fact that it has a list ofvtkMetaDataSet as attribute. When a sequence is
read (via theRead() function which takes in this case a directory as parameter, and not a single file name),
datasets are read and stored in its list according to their time flag. Then, thevtkDataSet member inherited
from its base class (vtkMetaDataSet) is used as a buffer: the object is created (the memory address is
set once for all), and the members (like point data, polygonal data, scalar arrays) will point towards the
requested time point when the methodUpdateToTime(double) is called (Fig.8). Thus, no object is copied
whenUpdateToTime() is called (optimal memory use), and only thevtkMetaDataSet that serves as an
interface will have its attributes changed. However, no temporal interpolation is made when the requested
time point is not available in the list. Instead, the nearest temporal neighbor is chosen. This prevents memory
copies but may not be the best solution when time points of the sequence are not regularly sampled: temporal
interpolation would be necessary in this case and is part of the future work.

Several time sequences can be synchronized via thevtkDataManager by calling the function
UpdateSequencesToTime(double time). This is a very desirable feature in cardiac simulation, when

Figure 7: An example of the vtkDataManager in use. Left: A panel (built in KWWidget) summarizes the

vtkDataManager content. The selected data are rendered in the 3D view on the right. The meshes here come

from a heart segmentation (data courtesy of Thomas Mansi).

11

Figure 8:Structure of the vtkMetaDataSetSequence class. After adding several vtkMetaDataSets to this class with

AddMetaDataSet() or Read(), the user may call UpdateToTime(double time) to see the attributes of the output

dataset (GetDataSet()) change according to the requested time point. Attributes that are passed to the buffer vary

with the type of vtkMetaDataSet. For instance, point coordinates and cell data are passed for a polygonal object while

point scalars are passed for an image object.

an image plus a corresponding mesh sequence of the heart are displayed simultaneously.

The support of time sequences was very recently introduced in VTK, after the creation of the
vtkDataManagement library. As the functionalities are not completely similar we chose to keep on de-
veloping our approach. However, the possibility to fuse with the latest VTK developments is still open.

5 Applications

We briefly describe in this section two applications that use vtkINRIA3D, VTK and ITK. The first one, called
MedINRIA, is a collection of softwares for medical image processing and visualization and is dedicated to
clinicians. The second one, calledCardioViz3D, targets research in cardiac imaging.

5.1 MedINRIA

MedINRIA consists of a set of programs, each of them being dedicated to a specific application or MRI
modality. For instance, a first application calledDTI Trackprovides a processing and visualization pipeline
for DT-MRI using Log-Euclidean metrics [5]. RegistrationToolallows to perform from manual rigid to
fully automatic non-linear registration using state-of-the-art methods [8]. Other applications include a semi-
automatic segmentation of MS lesions and a simple yet powerfulImageViewer.

It uses wxWidgets [3] for the user interface. wxWidgets has a proper interface with VTK
(http://wxvtk.sourceforge.net) that we slightly modified and included invtkINRIA3D.

MedINRIA is partly open-source, and binaries for Windows, Linux and MacOSX are freely available at:
http://www-sop.inria.fr/asclepios/software/MedINRIA. The source of theImageViewerapplica-
tion comes withvtkINRIA3D. Figure9 left showsDTI Track running. A documentation is available on the
same web site, as well as a set of test data.

5.2 CardioViz3D

CardioViz3D targets research in cardiac imaging. It is funded by the CardioSense3D project
(http://www-sop.inria.fr/CardioSense3D) and aims at providing researchers with a set of tools for

12

Figure 9:MedINRIA and CardioViz3D: Two applications built upon vtkINRIA3D. Left: MedINRIA running the applica-

tion DTI Trackwith fiber bundles extracted from DT-MRI. Right: CardioViz3D is used to visualize the result of a cardiac

simulation: a model of the heart is displayed in 3D (bottom right window) and in three 2D orthogonal views. The color

codes for the propagation of the action potential.

the processing, simulation and visualization of cardiac data. At the current state of development (v. 1.2.7),
the software proposes a visualization system of cardiac images and meshes, and supports time sequences.

CardioViz3D is built with ITK, VTK, vtkINRIA3D and KWWidgets [1]. The use of KWWidgets gives the
possibility to researchers to write and run tcl scripts.

CardioViz3D is partly open-source, and a release of a beta version for Windows, linux and MacOSX is
available athttps://gforge.inria.fr/projects/cardioviz3d/. The core of CardioViz3D, called
KWAddOn, is given with the source code ofvtkINRIA3D.

6 Conclusions and Future Work

This paper presentsvtkINRIA3D, a collection of new VTK classes to handle spatiotemporal datasets in
terms of synchronization, visualization, and management. Practically, it consists of three libraries. First, the
vtkRenderingAddOn library implements a strategy of synchronization of interactions and visualization of
severalvtkRenderWindow. It also provides a 2D and 3D visualization pipeline for volumes, with the possi-
bility to use a 2D tracer and create interactively volume of interests in 3D. Second, thevtkVisuManagement
library’s goal is to facilitate the creation of complex visualization and interaction systems of datasets. It
concerns tensor fields, large sets ofvtkPolyLines (as produced in DT-MRI tractography), isosurfaces, and
images. Third, thevtkDataManagement library aims at providing a single container of objects in an ap-
plication to easily manage creation, deletion, and organization of datasets. Moreover, it supports temporal
sequences of any type of data, e.g., images or polygonal data. Finally, we briefly described two applica-
tions based uponvtkINRIA3D: MedINRIA, a set of softwares for medical image processing with a clear user
interface, andCardioViz3Da research software dedicated to cardiac imaging.

Future developments include new synchronized methods between views (such as the synchronization of 3D
cameras), visualization techniques of other complex data (like ordinary distribution function as obtained in
Q-ball imaging [7]), and temporal interpolation of datasets using the recent classes developed in VTK.

vtkINRIA3D is open-source, freely available at:

13

http://www-sop.inria.fr/asclepios/software/vtkINRIA3D. A set of test data can be downloaded
as well.

A Examples

A.1 SynchronizedViews

The source code for this example can be found inExamples/SynchronizedViews/SynchronizedViews.cxx.
The goal of this example is to synchronize the visualization of an image, i.e., synchronize the navigation into
the slices and the window/level for contrast adjustment. We use subclasses ofvtkView: vtkViewImage2D
for 2D visualization andvtkViewImage3D and 3D visualization:

#include <vtkViewImage2D.h>
#include <vtkViewImage3D.h>

We create four of these: threevtkViewImage2D (one axial, sagittal and coronal view) and one 3D view of
the image. The creation of one of thevtkViewImage2D is given below:

vtkViewImage2D* view1 = vtkViewImage2D::New();
vtkRenderWindowInteractor* iren1 = vtkRenderWindowInteractor::New();
vtkRenderWindow* rwin1 = vtkRenderWindow::New();
vtkRenderer* renderer1 = vtkRenderer::New();
iren1->SetRenderWindow (rwin1);
rwin1->AddRenderer (renderer1);
view1->SetRenderWindow (rwin1);
view1->SetRenderer (renderer1);

We now set some properties for the 2D/3D views: orientation, type of interaction, background color, etc.:

view1->SetInteractionStyle (vtkViewImage2D::SELECT_INTERACTION); // navigate through the
slices with the mouse
view1->SetOrientation (vtkViewImage2D::AXIAL_ID);
view1->SetBackgroundColor (0.0,0.0,0.0);
view1->SetAboutData ("Powered by vtkINRIA3D");

view4->SetRenderingModeToPlanar();
view4->SetCubeVisibility(1); // orientation cube

We finally link the views together for synchronization:

// view1 transmits to view2 which transmits to view3, etc.
view1->AddChild (view2);
view2->AddChild (view3);
view3->AddChild (view4);
view4->AddChild (view1);

When the program exits, or whenever one want to delete a view, one should call the methodDetach(), so
the synchronization mechanism is not stopped:

// Before exiting and deleting the VTK objects

A.2 The Data Manager 14

view1->Detach();
view2->Detach();
view3->Detach();
view4->Detach();

A.2 The Data Manager

This example briefly shows how to optimally use thevtkDataManager. The source code for this section
can be found inExamples/DataManager/DataManager.cxx. The purpose of this example is simple : in a
few lines of code, it will scan a directory, read any dataset available in it, and render all of them in a view
provided by thevtkRenderingAddOn library. It can also scan a directory for temporal sequence reading.
All the available datasets will be taken to build the time sequence that will be added to the manager.

#include <vtkViewImage2D.h>
#include <vtkDataManager.h>
#include <vtkMetaImageData.h>
#include <vtkMetaSurfaceMesh.h>
#include <vtkMetaVolumeMesh.h>
#include <vtkMetaDataSetSequence.h>

We set the vtkView (visualization pipeline):

vtkViewImage3D* view = vtkViewImage3D::New();
vtkRenderWindowInteractor* iren = vtkRenderWindowInteractor::New();
vtkRenderWindow* rwin = vtkRenderWindow::New();
vtkRenderer* renderer = vtkRenderer::New();

iren->SetRenderWindow (rwin);
rwin->AddRenderer (renderer);
view->SetRenderWindow (rwin);
view->SetRenderer (renderer);

view->SetRenderingModeToPlanar();
view->SetCubeVisibility(1);
view->SetAboutData ("Powered by vtkINRIA3D");

We allocate avtkDataManager and scan the user-provided directory:

vtkDataManager* DataManager = vtkDataManager::New();
DataManager->ScanDirectory(directoryname.c_str());

For reading a time sequence of data, we replace the above last line of code by:

DataManager->ScanDirectoryForSequence(directoryname.c_str());

Then we just need to add the datasets in the view:

for (unsigned int i=0; i<DataManager->GetNumberOfMetaDataSet(); i++)
{

vtkMetaDataSet* metadataset = DataManager->GetMetaDataSet (i);
vtkProperty* prop = vtkProperty::SafeDownCast(metadataset->GetProperty());
view->AddDataSet (metadataset->GetDataSet(), prop);

}

References 15

Note that playing the sequence is done by callingDataManager->UpdateSequencesToTime() in a loop.
It can be done in real time thanks to avtkTimerLog.

References

[1] KWWidgets. http://www.kwwidgets.org/.5.2

[2] VTK: The visualization toolkit. http://www.vtk.org.1

[3] wxWidgets. http://www.wxwidgets.org.2, 5.1

[4] P. Basser, J. Mattiello, and D. Le Bihan. MR diffusion tensor spectroscopy and imaging.Biophysical
Journal, 66:259–267, 1994.1

[5] Pierre Fillard, Vincent Arsigny, Xavier Pennec, and Nicholas Ayache. Clinical DT-MRI estimation,
smoothing and fiber tracking with Log-Euclidean metrics.IEEE Transactions on Medical Imaging,
2007. In Press.5.1

[6] L. Ibanez, W. Schroeder, L. Ng, and J. Cates.The ITK Software Guide. Kitware, Inc. ISBN 1-930934-
10-6, http://www.itk.org/ItkSoftwareGuide.pdf, first edition, 2003.2

[7] D. Tuch. Q-ball imaging.MRM, 52:1358–1372, 2004.6

[8] Tom Vercauteren, Xavier Pennec, Aymeric Perchant, and Nicholas Ayache. Non-parametric diffeomor-
phic image registration with the demons algorithm. InProc. of MICCAI’07, 2007. In press.5.1

