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Abstract

This article provides an implementation of our non-pararoetiffeomorphic image registration algo-
rithm generalizing Thirion’s demons algorithm. Within thresight Toolkit (ITK), the demons algorithm
is implemented as part of the finite difference solver framew We show that this framework can be
extended to handle diffeomorphic transformations. The@aode is composed of a set of reusable
ITK filters and classes. In addition to an overview of our ierpentation, we provide a small example
program that allows the user to compare the different vésiahthe demons algorithm.
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Forewords

This article is a companion paper to the authors MICCAI 208p@ep [15] entitled “Non-parametric dif-
feomorphic image registration with the demons algorithrit’is intended to share the source code of our
algorithm. As such it provides only basic information abthe theory and does not present an evaluation
of the method. The reader is thus invited to refer to [15] far theoretical aspects and for an evaluation of
the algorithm.

1 Introduction

Since Thirion’s seminal paper [13], the demons algorithrs bkeecome a popular method for the problem of
intra-modality deformable image registration. The demalgerithm has successfully been used by several
teams [16,17] and an open source implementation of it idaaiin the Insight Toolkit [7]. The success of
this method in the field of biomedical imaging can largely kplained by its efficiency. Thirion introduced
demonghat push according to local characteristics of the imagessimilar way Maxwell did for solving
the Gibbs paradox. The forces are inspired from the optica #quations [2] and the method alternates
between computation of the forces and their regularizdbiypa simple Gaussian smoothing.

With the advent of computational anatomy and in the abseheagustified physical model of inter-subject
variability, statistics on diffeomorphisms have becomdraportant topic [1]. Diffeomorphic registration
algorithms are at the core of this research field since thegngfrovide theénput data They usually rely
on the computationally heavy solution of a partial diffar@hequation [3, 6, 8,11, 12] or use very small
optimization steps [5]. In [15], we proposed an efficient qpamametric diffeomorphic image registration
algorithm based on an extension of the demons algorithm.

To the best of our knowledge, no diffeomorphic registratinethod has yet been integrated to the Insight
Toolkit. The goal of this work is to introduce the algorithrh [@5] into ITK to provide an open source
implementation of an efficient diffeomorphic image regititn method.

2 Overview of the Algorithm

2.1 The Demons Algorithm

It has been shown in [4] that the demons algorithm could be as@n optimization of a global energy. The
main idea is to introduce a hidden variable in the regigiraprocess: correspondences. We then consider
the regularization criterion as a prior on the smoothnestheftransformatiors. Instead of requiring that
point correspondences between image pixels (a vectord)dbé exact realizations of the transformation,
one allows some error at each image point.

Given afixed image K.) and amoving image M), we end-up with the global energy:
E(cs) =%Sim(F.Moc)+Ldist(sc)®+ 2 Reg(s), (1)
i X T
Sim(F,Mos) = 3||F =Mos||* = 535 peqs IF (P) = M(S(p))|*, 2)

whereQp is the region of overlap betwedn andM o s, g; accounts for the noise on the image intensity,
Oy accounts for a spatial uncertainty on the correspondenmgs-acontrols the amount of regularization
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we need. We classically have distc) = ||c—s| and Reds) = ||s||* but the regularization can also be
modified to handle fluid-like constraints [4].

Within this framework, the demons registration can be @rpld as an alternate optimization oweandc.
It can conveniently be summarized into the algorithm below:

Algorithm 1 (Demons Algorithm)

e Choose a starting spatial transformation (a vector figld)
e Iterate until convergence:
— Givens, compute a correspondence update fiehy minimizing
2
ESO(U) = ||F — Mo (s+u)||>+ % ||ul|® with respect tau
— If a fluid-like regularization is used, let«— Ksuig x U. The convolution kernel will typically be
Gaussian
— Letc«—s+u

— If a diffusion-like regularization is used, let— Ky * C (else lets < c). The convolution kernel
will also typically be Gaussian

In [14], we showed that a Newton method BEP"(u) provided us with the folowing optimization step:

u(p):_WJDT (3)

2
19P]1% 4 252

o2
where we use the local estimatior(p) = |F(p) — M oc(p)| of the image noise and whejé = —DE(M 0S)

with a Gauss-Newton methodP = —3(OTF + 07 (Mo s)) with the efficient second-order minimization
(ESM) method of [10] andP = —DEF with Thirion’s rule. Note that, then controls the maximum step
length: [|u(p)|| < ox/2.

2.2 Newton Methods for Lie Groups

The most straightforward way to adapt the demons algorithmmake it diffeomorphic is to optimizél(1)
over a space of diffeomorphisms. This can be done as in [I)\L0king an intrinsic update step

S« soexp(u), 4)

on the Lie group of diffeomorphisms. This approach obvigushuires an algorithm to compute the expo-
nential for the Lie group of interest. Thanks to the scaling aquaring approach of [1], this exponential
can efficiently be computed for diffeomorphisms with juseafcompositions:

Algorithm 2 (Fast Computation of Vector Field Exponentials)

e ChooseN such that 2Nu is close enough to 0, e.g. mg& Nu(p)|| < 0.5
e Perform an explicit first order integration( p) < 2~Nu(p) for all pixels

e Do N (not V1) recursive squarings of W« vov
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2.3 Diffeomorphic Demons

By plugging the above Newton method tools for Lie groups imithe alternate optimization framework of
the demons, we proposed in [15] the following non-pararoetiffeomorphic image registration algorithm:

Algorithm 3 (Diffeomorphic Demons Iteration)

Compute the correspondence update fielsing (3)

If a fluid-like regularization is used, let+— Ksyig + U.

Let c «+ soexp(u), whereexp(u) is computed using Algorithiil 2

If a diffusion-like regularization is used, let— Kt x C (else lets « c).

3 Brief Note on the Implementation

Our implementation tries to follow the style and design oé timsight Toolkit. All our filter areN-
dimensional and are templated over the important types aadfe pixel types. In most cases we tried
to divide the algorithm into meaningfull and reusable a&ss

As shown in Algorithm[B, several blocks can be distinguishafe can first see that a method is re-
quired to compute the Lie group exponential of Algorithin 2hisTalgorithm takes a speed vector field
on input and provides on output a diffeomorphic deformatiepresented as a standard displacement
vector field. A natural choice was thus to implemented thipomential as an ITK image filter: the
Exponent i al Def or mati onFi el dl mageFi | ter class. This filter can easily be reused in a different setting
such as to compute statistics on diffeomorphisms.

In order to ease the creation of tBeponenti al Def or mati onFi el dl mageFi | ter class, several usefull
and reusable filter such as tbevi deByConst ant | mageFi | t er are also provided.

Within the Insight Toolkit, the demons algorithm is implemed as part of the finite difference
solver (FDS) framework. Our implementation of the diffeapitic demons is also built on top of
this framework by implementing a specialized version d?D&Def or mabl eRegi strationFilter: the

Di f f eoror phi cDemonsRegi strationFilter class. The most important modification we did to the
FDS pipeline, is to include this exponentiation step witttia Appl yUpdat e function of our specialized
PDEDef or mabl eRegi strationFilter class.

In addition to these main classes, our submission alsodesla set of filters that are not fully part of the
algorithm (e.gVWar pJacobi anDet er mi nant Fi | t er). Most of these filters are meant to provide some statis-
tics on the output of the algorithms. They should ease a gatime comparison of the different variants of
the demons algorithm. The algorithm can also use an inig&bnhation field obtained from a prior regis-
tration. Typically a user can want to perform an affine regigtn before moving to non-rigid registration.
In order to ease the creation of a deformation field given aiap@ansformation (an itk::Transform), we
have also implementedTaansf or nToDef or mat i onFi el dFi | t er class.

Below is the list of classes, with brief descriptions, that provide and use within our method:

e itk::DiffeomorphicDemonsRegistrationFilter < TFixedlmage, TMovingimage, TDeformation-
Field >: Deformably register two images using a diffeomorphic deswalgorithm



e itk::DivideByConstantimageFilter < TInputimage, TConstant, TOutputimage >: Divide in-
put pixels by a constant

¢ itk::ESMDemonsRegistrationFunction < TFixedimage, TMovingimage, TDeformationField
>: Fastimplementation of the symmetric demons registratiooef

¢ itk::ExponentialDeformationFieldimageFilter < TInputimage, TOutputimage >: Compute
a diffeomorphic deformation field as the Lie group exporedraf a vector field

e itk::FastSymmetricForcesDemonsRegistrationFilter < TFixedimage, TMovinglmage, TDefor-
mationField >: Deformably register two images using a symmetric forcesateralgorithm

e itk::GridForwardWarplmageFilter < TDeformationField, TOutputimage >: Warp a grid us-
ing an input deformation field

¢ itk::MultiplyByConstantimageFilter < TInputimage, TConstant, TOutputimage >:  Multi-
ply input pixels by a constant

¢ itk::MultiResolutionPDEDeformableRegistration2 < TFixedimage, TMovinglmage, TDefor-
mationField, TRealType >:  Framework for performing multi-resolution PDE deformaloés-
istration

e itk::TransformToDeformationFieldFilter < TOutputlmage, TTransformScalarType >: Com-
putes a deformation field from an input spatial transfororati

e itk::VectorCentralDifferencelmageFunction < Tlnputimage, TCoordRep >:  Calculate the
derivative by central differencing

e itk::VectorLinearInterpolateNearestNeighborExtrapol atelmageFunction <  Tlnputimage,
TCoordRep >: Linearly interpolate or NN extrapolate a vector image atc#pe positions

e itk::WarpJacobianDeterminantFilter < TInputlmage, TOutputimage >: Compute a scalar
image from a vector image (e.g., deformation field) inputereheach output scalar at each pixel is
the Jacobian determinant of the warping at that location

e itk::WarpHarmonicEnergyCalculator < TInputimage >: Compute the harmonic energy of a
deformation field

4 Users’ Guide

From a user’s point of view the most important file of our sugsion is the example application provided
in DemonsRegi stration. cxx. The goal of this example is to provide a command-line togddorm an
intra-modality deformable registration with a chosen aatiof the demons. This tool works in both 2D and
3D and can trivially be extended to other dimensions.

The user can choose the input images, the variant of the dethahshould be used and the type of out-
put that should be stored. The image IO operations use staht filters meaning that all file formats
supported by ITK can be used. This is true for both the imagdstee possible input spatial transformation.

Below is the list of options of the command-line tool:

o -f/-fixed-image=STRING: Fixed image filename - mandatory argument



e -m/—moving-image=STRING: Moving image filename - mandatory argument
e -b/-input-field=STRING: Input field filename - default: empty

e -p/—input-transform=STRING Input transform filename - default: empty

e -0/—output-image=STRING: Output image filename - default: output.mha

e -O/—output-field(=STRING): Output field filename, optional argument - default:
OUTPUTIMAGENAME-field.mha

e -r/-true-field=STRING: True field filename, this is for controlled experiments onljiefre we
want to compare the results of the algorithm with a known frelel - default: not used

e -n/-num-levels=UINT: Number of multiresolution levels - default: 3
e -i/-num-iterations=UINTX...xUINT:  Number of demons iterations per level - default: [10 10 10]

e -s/—def-field-sigma=FLOAT: Smoothing sigma for the deformation field at each iteratidafault:
3

e -g/—up-field-sigma=FLOAT: Smoothing sigma for the update field at each iteration - def@u
e -l/-max-step-length=FLOAT:. Maximum length of an update vector (0: no restriction) - détfa2

e -a/-update-rule: Type of update rule. ( s« soexp(u) (diffeomorphic), 1:s+ s+ u (ITK basic),
2: s« so (Id+u) (Thirion) )

e -t/—gradient-type=UINT.  Type of gradient used for computing the demons force (0 is-sym
metrized, 1 is fixed image, 2 is warped moving image, 3 is mdppeving image) - default: 0

e -e/-use-histogram-matching: Use histogram matching (e.qg. for different MRs)

e -v/-verbose(=UINT): Verbosity, if a verbose mode is used, the application withpate a set of
statistics and write them to a text file - default: O; withorglanent: 1

e -h/-help: Display an help message and exit

This command-line tool is used within a unit test triggergddMake.

5 Conclusion

We have proposed an ITK implementation of our efficient naremetric diffeomorphic registration al-
gorithm. To the best of our knowledge, this is the first opearse implementation of a diffeomorphic
registration tool within the Insight Toolkit. The design afir implementation tries to follow the design of
ITK and thus provides templatdd-dimensional filters. The code should be easily integratelK and
provide reusable blocks.
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