
ManagedITK: .NET Wrappers for ITK
Release 1.5

Dan Mueller1

May 12, 2008
1Queensland University of Technology, Brisbane, Australia

Abstract

ManagedITK generates wrappers around ITK for .NET languages. These wrappers can be
used with any CLR language, including C#, VB.NET, IronPython, and others. ManagedITK is
useful for a number of reasons, including the ability to rapidly create graphical user interfaces
using Windows Forms (also known as System.Windows.Forms). Full source code and
many in-depth examples accompany this article. Pre-compiled .NET assemblies can also be
downloaded for easy integration into standalone C# applications.

Keywords: C#, C++/CLI, .NET, CLR, ITK, medical image processing

1 Introduction

The Insight Toolkit (ITK) [4] is an open-source software system designed for image segmenta-
tion and registration — particularly for medical images. ITK is implemented in C++ and supports
multiple platforms including Windows, Unix, MacOSX, etc. The toolkit is organised in a data-flow
architecture: process objects (eg. filters) consume data objects (eg. images). The toolkit is imple-
mented using generic programming principles, whereby objects are templated over different types
at compile-time. The architecture and design of ITK, together with the complied C++ implementa-
tion, provides for efficiency, speed, and flexibility. However, interpretive or scripting languages are
useful for rapidly prototyping applications and developing graphical user interfaces (GUIs). ITK has
recently upgraded it’s wrapping system to WrapITK [3].

WrapITK produces automatically generated wrappers for common ITK objects using CableSwig1.
SWIG2, upon which CableSwig is built, supports the generation of wrappers from C++ to various
scripting languages including Perl, PHP, Python, Tcl, Ruby and PHP, as well as other non-scripting
languages such as C#, Lisp, Java, Modula-3 and OCAML. However, CableSwig derives from an

1Cable Automates Bindings for Language Extension (Cable) Simplified Wrapper and Interface Generator (Swig):
http://www.itk.org/HTML/CableSwig.html

2Simplified Wrapper and Interface Generator: http://www.swig.org/

http://www.itk.org/HTML/CableSwig.html
http://www.swig.org/

ManagedITK: .NET Wrappers for ITK 2

old version of SWIG and at the time of writing only supports Python, Java, and Tcl. It is desir-
able to generate ITK wrappers for CLR3 languages, such as C#, VB.NET and IronPython. The
.NET CLR is a popular platform which provides a large body of pre-coded solutions to common
programming problems, including a powerful GUI application programming interface (API) known
as System.Windows.Forms or simply Windows Forms.

This article describes ManagedITK — a project which generates ITK wrappers for .NET CLR lan-
guages. It extends (probably more accurately mangles) WrapITK, but is a separate system which
does not use CableSWIG or SWIG. The generated wrappers are created in a semi-automated
fashion, tailored to produce a set of managed classes with well-defined methods, properties, and
events. As such, the generated wrappers are not 100% pure (ie. in some cases the ITK API has
been altered to better fit the Common Language Infrastructure (CLI) architecture, especially with
the addition of properties). The next section describes the features of ManagedITK, providing a
discussion of both advantages and disadvantages. Following this, the use of the pre-compiled as-
semblies is discussed, as well as the compilation process from the included source files. The bulk
of the remaining text is devoted to in-depth examples demonstrating the nuts-and-bolts of using the
.NET CLR wrappers.

2 Features

As with any engineering solution, ManagedITK offers a number of benefits at the cost of various
trade-offs. The advantages of ManagedITK include:

Rapid GUI Development: The Windows Forms library can be used to quickly and easily create
graphical user interfaces which interact with ITK data and process objects. For examples see
Section 4.1.6, and Section 4.4.1.

Run-time Type Specification: Most ManagedITK objects provide “runtime-type wrapper” objects
which can be used to specify the explicit type at run-time, rather than compile-time (as with the
native C++ templates). For example, the itkImage class provides a runtime-type wrapper
around the explicit types itkImage UC2, itkImage SS2, itkImage F2, etc, allowing the
user to choose the type at run-time.

Simplified Event Handling: Native ITK events can be easily observed using managed
delegates. See Section 4.3.2 for more details.

Multi-language Support: Supported languages include C#, C++/CLI, VB.NET, IronPython4, F#5,
Chrome (Object Pascal)6, and other languages which target the .NET CLR.

3The CLR (Common Language Runtime) is the Microsoft Windows implementation of the CLI (Common Language
Infrastructure). Basically it is a Windows implementation of a virtual machine able to run CIL (Common Intermediate
Language) bytecode. See Figure 1.

4http://www.codeplex.com/IronPython/Wiki/View.aspx
5http://research.microsoft.com/fsharp
6http://www.chromesville.com

http://www.codeplex.com/IronPython/Wiki/View.aspx
http://research.microsoft.com/fsharp
http://www.chromesville.com

ManagedITK: .NET Wrappers for ITK 3

Object Browser and Auto-complete: The documentation from ManagedITK assemblies can be
viewed in the Object Browser to discover managed classes, methods, properties, and events.
The Visual Studio auto-complete feature can be used to read documentation while coding.
See Figure 2 and Figure 3.

Unfortunately ManagedITK suffers from a number of disadvantages:

Windows Platform Only: ManagedITK has a dependency on the vcredist assemblies. These
libraries are only supported by the Windows.NET CLR.

Memory Management: The CLR is an interpreted architecture which uses a garbage collector
(GC) to manage memory. As such, there are no guarantees regarding object finalization: the
garbage collector reclaims memory as it sees fit. This means that even though an image may
no longer be in scope, there is no guarantee that the native itk::Image resources have been
freed. To help alleviate the issue, every ManagedITK object implements the IDisposable
interface, providing a Dispose() method7. Calling this method forces the native object to
free its resources, however — in some respects — this practice defeats the purpose of the
itk::SmartPointer. In our experience it is not imperative to call Dispose(), nonetheless
it has been provided to support deterministic finalization.

Virtual Memory Allocation: Unfortunately we have found the use of virtual memory is limited in
comparison to a native C++ implementation. In our experience, a process running on a
system with 1 GB physical RAM can only allocate approximately 1 GB of memory. A process
running on a system with 2+ GB physical RAM can allocate the full theoretical 2 GB of memory
before an OutOfMemoryException is thrown.

Performance: Most ManagedITK classes achieve similar performance to their native counterparts.
However, a single managed-to-native transition (when managed code calls native code) re-
duces the execution speed. Optimal performance is achieved when such transitions are
minimised8. For most itk::ProcessObjects the Update() method encapsulates the pro-
cessing, which inherently minimises these transitions. This means, for example, that a ma-
jority of managed itk::ImageToImageFilter subclasses will execute with similar speed to
a natively compiled executable. Other objects (such as itkImageIterators) exhibit many
managed-to-native transitions by design, and as such their performance is heavily degraded.
In the future, the performance of the ManagedITK.Image.Iterators assembly may be im-
proved by reworking the dividing line between the managed and native worlds.

Semi-automated Wrapping: The wrappers are generated in a semi-automated manner: hard-
coded cmake files emit C++/CLI code for managed methods, properties, and events (ie. Ca-
bleSWIG and/or SWIG are not used to automatically generate the wrappers). Therefore, if
new properties or methods are added to a native ITK object, the wrapper files need to be
manually updated.

7See http://msdn2.microsoft.com/en-us/library/aa730837(VS.80).aspx#cplusclibp topic3 for more details.
8See http://msdn2.microsoft.com/en-us/library/aa730837(VS.80).aspx#cplusclibp topic5 for more details.

http://msdn2.microsoft.com/en-us/library/aa730837(VS.80).aspx#cplusclibp_topic3
http://msdn2.microsoft.com/en-us/library/aa730837(VS.80).aspx#cplusclibp_topic5

ManagedITK: .NET Wrappers for ITK 4

Coverage: While ManagedITK provides coverage for a large majority of objects it does not pro-
vide full coverage. Objects currently not supported include: shaped neighborhood iterators,
statistics (samples, histograms, etc.), deformable transforms, FFT, and complex IO. A full list
of wrapped classes is provided with the binaries.

Automated Regression Testing: There are currently no automated regression tests covering the
managed wrappers. CMake does not support managed projects and as such its testing
mechanism can not be used in this case. It is desirable to add some form of automated
testing in the future, perhaps using NUnit.

When deciding if ManagedITK suits your particular needs, please take into account the advantages
and disadvantages described above. ManagedITK will not be suitable for all applications, but may
be useful for rapid development of simple GUI-based imaging applications.

3 Using ManagedITK

3.1 Using the Pre-compiled Assemblies

Accompanying this article is the full source-code to compile the ManagedITK wrappers. However,
unless you need to make changes or additions to the provided assemblies, it is recommended you
use the pre-compiled assemblies. To use these assemblies in an application, follow these steps:

1. Download and unzip the pre-compiled assemblies from: The Insight Journal.

2. Ensure the .NET Framework 2.0 is installed on your system. See here to download the .NET
Framework Redistributable Package dotnetfx.exe.

3. Install the Microsoft Visual C++ 2005 Redistributable Package vc redist x86.exe avail-
able from here. You may be required to reboot your computer after installing these redis-
tributable libraries.

4. Open Visual Studio and create a new project eg. a “Console Application”.

5. Expand the project in the Solution Explorer, right-click “References”, and then select “Add
References...”.

6. Select the “Browse” tab and browse to the folder where you unzipped the pre-compiled as-
semblies.

7. Select the ManagedITK.Common.dll assembly and any other required assemblies (use the
Ctrl key to select multiple files). Click OK.

8. You are now ready to use ITK from your .NET project!

http://insight-journal.org/dspace/handle/1926/501
http://www.microsoft.com/downloads/details.aspx?familyid=0856EACB-4362-4B0D-8EDD-AAB15C5E04F5
http://www.microsoft.com/downloads/details.aspx?FamilyID=200B2FD9-AE1A-4A14-984D-389C36F85647

ManagedITK: .NET Wrappers for ITK 5

Figure 1: Overview of the Common Language Infrastructure (CLI) [1].

ManagedITK: .NET Wrappers for ITK 6

(a)

Figure 2: Using the Visual Studio Object Browser.

Figure 3: Using Visual Studio Auto-completion.

ManagedITK: .NET Wrappers for ITK 7

3.2 Compiling the Assemblies

To compile the ManagedITK assemblies from the source-code with Microsoft Visual Studio 8.0,
follow these steps:

1. Download Source: The latest and greatest source files can be downloaded from: The Insight
Journal

2. Unzip Source: Unzip the source to a folder, such as
C:/Insight-Toolkit/Wrapping/ManagedITK.

3. Patch ITK: Follow the instructions in the Patch folder to patch your ITK source to fix a bug
caused by the Visual Studio 8.0 compiler. Hopefully these patches can be included in the ITK
CVS source in the future.

4. Configure and Build ITK: Configure and build ITK 3.2.0 or greater with ITK USE REVIEW =
ON.

5. Configure ManagedITK: Open CMake and set the source-code to the folder containing the un-
zipped source and the build path to the desired location (as of v3.2.0.2 ManagedITK supports
both in-source and out-of-source builds). The example projects currently have the build path
hard-coded, expecting Buildx86; if you chose another location you will have to manually
change the references for each C# project under the Examples folder. Click the Configure
button and select “Visual Studio 8 2005”9. Set the ITK DIR and WRAP * variables as desired.
Click the OK button to finish the configuration.

6. Convert to Managed Projects: Before opening the projects, run the FinishCMake.bat file lo-
cated in the build folder. Because CMake does not support managed projects, this batch file
is required to convert the generated vcproj files into managed projects.

7. Open Solution: Open the ManagedITK.sln solution file. If you have a dual processor or multi-
threaded machine, set the parallel project build option as desired. To configure this feature,
go to Tools>Options>Projects and Solutions>Build and Run and type the maximum number
of parallel builds in the text box.

8. Build Projects: Build all the projects by right-clicking ALL BUILD and selecting Build. The
ALL BUILD project automatically builds all the projects taking care of dependencies.

9 ManagedITK requires .NET Framework 2.0 or greater. It has only been tested using Visual Studio 8.0 2005 (with
SP1), however it should work with Visual C++ 2005 Express Edition.

http://insight-journal.org/dspace/handle/1926/501
http://insight-journal.org/dspace/handle/1926/501

ManagedITK: .NET Wrappers for ITK 8

4 Examples

4.1 Images

4.1.1 Allocating an Image

The source code for this section can be found in the file
Examples/Images/itk.Examples.Images.Allocate1.cs.

This example illustrates how to manually construct and allocate a managed itk::Image. Firstly,
we use the itk namespace (this step is not necessary but makes the code more user friendly10):

1 using itk;

Recall in native ITK, images are templated over the pixel type and the number of dimensions. Tem-
plates are not supported by the CLR, so ManagedITK explicitly wraps images with different template
combinations. ManagedITK also includes numerous wrapper types, however this particular exam-
ple only uses an explicit type. Similar to native ITK, the image is created using the New() method:

1 // Create an image using an explicit type
2 // Note: "UC2" stands for itk::Image< unsigned char, 2 >.
3 itkImageBase image = itkImage_UC2.New();

Finally, we create and set an image region, Allocate the memory, and fill the buffer:

1 // Create some image information
2 itkImageRegion region = new itkImageRegion(size , index);
3
4 // Set the information
5 // Note: we must call SetRegions() *before* calling Allocate().
6 image.SetRegions(region);
7 image.Allocate();
8
9 // Fill the image with gray (ie. 128)
10 image.FillBuffer (128);

Executing the example gives the following output:

> itk.Examples.Images.Allocate1
Image[0, 0]=128
PixelType=Unsigned Char
Dimension=2
Size=[128, 128]
Spacing=[1.0, 1.0]
Origin=[000.00, 000.00]

10The additional itk at the front of the name of every managed class was incorporated for two reasons: 1. a similar
convention is used for other wrappings (eg. VTK .NET Wrappers: http://vtkdotnet.sourceforge.net), and 2. doing so
allows both the native and managed versions to be used without conflict in languages which support both (eg. C++/CLI).

http://vtkdotnet.sourceforge.net

ManagedITK: .NET Wrappers for ITK 9

4.1.2 Reading Image Information

The source code for this section can be found in the file
Examples/Images/itk.Examples.Images.ReadInformation1.cs.

The native itk::ImageIOBase::ReadImageInformation() method gives applications the abil-
ity to peek at the image information without unnecessarily reading the image data. A
similar static method is provided by itkImageBase.ReadInformation(), which returns an
itkImageInformation structure containing the number of dimensions, pixel type, size, spacing
and origin.

1 // Read the image file information
2 itkImageInformation info = itkImageBase.ReadInformation(args[0]);

The information structure can be used to choose the image type at run-time, as shown in this
example:

1 // Use file information to create and read an image
2 itkImageBase image = itkImage.New(info.PixelType , info.Dimension);

Executing the example gives the following output:

> itk.Examples.Images.ReadInformation1 cthead1.png
Information --------------------------
PixelType=RGB Unsigned Char
Dimension=2
Size=[256, 256]
Spacing=[1.0, 1.0]
Origin=[000.00, 000.00]
Image --------------------------------
Name=cthead1.png
PixelType=RGB Unsigned Char
Dimension=2
Size=[256, 256]
Spacing=[1.0, 1.0]
Origin=[000.00, 000.00]
Buffer =57064620

4.1.3 Reading and Writing Images

The source code for this section can be found in the file
Examples/Images/itk.Examples.Images.ReadWrite1.cs.

One of the benefits of ManagedITK is the ability to easily choose the image type at run-time, rather
than compile-time. This example shows how to read and write an image, using a command line
argument to determine the type at run-time.

Firstly, we use the itk namespace:

ManagedITK: .NET Wrappers for ITK 10

1 using itk;

Next, we use a command line string argument (such as "UC2" or "IF3") to instantiate an image:

1 // Use the image type from the command line to create an image
2 itkImageBase image = itkImage.New(args[0]);

For sake of ease the itk::ImageFileReader, itk::ImageFileWriter, and other associated
objects have been directly incorporated into the managed itkImage class. This means that image
IO can be accomplished very easily only using the image object. Note that the underlying native
itk::Image is not actually created until a call to one of the following methods is made: Read(),
ReadSeries(), ReadDicomDirectory(), or Allocate(). The Read() method takes a single
String argument for the input file name:

1 // Read the image from disk
2 image.Read(args[1]);

Similarly the Write() method takes a single String argument for the output file name:

1 // Write the image to disk
2 image.Write(args[2]);

Executing the example gives the following output:

> itk.Examples.Images.ReadWrite1 "F2" cthead1.png cthead1_OUT.mhd
Name=cthead1.png
PixelType=Float
Dimension=2
Size=[256, 256]
Spacing=[1.0, 1.0]
Origin=[000.00, 000.00]
Buffer =57065616

4.1.4 Reading DICOM Images

The source code for this section can be found in the file
Examples/Images/itk.Examples.Images.ReadDicom1.cs.

The itkImageBase.ReadDicomDirectory() method uses the native itk::GDCMImageIO to
read an image from a DICOM directory. As discussed in the previous example, calling this
method creates the underlying native itk::Image. The ReadDicomDirectory() method expects
a String specifying the directory, however overrides also exist allowing you to specify the series id
and/or restrictions.

In this example we are expecting the DICOM directory to hold a 3D scalar image with SignedShort
component type:

ManagedITK: .NET Wrappers for ITK 11

1 // Create an explicit image type
2 itkImageBase image = itkImage_SS3.New();

The DICOM directory is passed in via a command line argument:

1 // Read the DICOM image from the given directory
2 image.ReadDicomDirectory(args[0]);

Finally, the extracted image can be saved in a different format: I recommend the MetaImage format
(*.mhd):

1 // Write the image to disk
2 image.Write(args[1]);

We have not included a DICOM series in the examples, however executing the example with an
appropriate directory gives the following output:

> itk.Examples.Images.ReadDicom1 D:\AA1\AA1\AA12345 C:\Temp\AA12456.mhd
Name=D:\AA1\AA1\AA12345
PixelType=Signed Short
Dimension=3
Size=[144, 144, 234]
Spacing=[4.0, 4.0, 4.0]
Origin=[-286.59, -216.59, -1041.35]
Buffer =66715680

4.1.5 Reading and Writing Image Series

The source code for this section can be found in the file
Examples/Images/itk.Examples.Images.ReadWriteSeries1.cs.

This example explains the usage of the itkImageBase.ReadSeries() and
itkImageBase.WriteSeries() methods.

The itkImageBase.ReadSeries() method expects an array of file names. Alternatively it expects
a base path and a file name containing the wildcard character ‘*’ (referred to as a pattern). An
example for the pattern argument might be: myfilename*.png.

1 // Read the image series using a pattern
2 image.ReadSeries(args[0], args[1]);

The itkImageBase.WriteSeries() method expects a file name format, with the ‘{0}’ string. This
format placeholder is replaced with the series id or slice number. The format of the series id can
also be specified: for example "000" forces the series id to have at least three digits. Any numeric
format string supported by Int32.ToString() can be passed in as the series id format.

ManagedITK: .NET Wrappers for ITK 12

1 // Write the image to disk as a series
2 image.WriteSeries(args[2], args[3]);

Executing the example with a7b1.jpg, a7b2.jpg, a7b3.jpg, and a7b4.jpg in the path C:/itk
gives the following output:

>itk.Examples.Images.ReadWriteSeries1 "C:/itk" "a7b*.png" "a7c{0}.jpg" "00"
PixelType=Unsigned Char
Dimension=3
Size=[72, 72, 4]
Spacing=[1.0, 1.0, 1.0]
Origin=[000.00, 000.00, 000.00]
Buffer =57044976

and writes the files: a7c00.jpg, a7c01.jpg, a7c02.jpg, and a7c03.jpg.

4.1.6 Displaying images using System.Drawing.Bitmap

The source code for this section can be found in the file
Examples/Images/itk.Examples.Images.FormBitmap1.cs.

This example shows how to use ManagedITK with System.Drawing.Bitmap. It should be noted
that the System.Drawing namespace is a managed wrapper around the Windows GDI+ library,
and as such only supports 8-bit images (which is far from ideal for medical imaging applications).
ManagedITK can be used to perform operations on images with a pixel depth greater than 8-bits,
however only 8-bit images can be displayed using System.Drawing.Bitmap11.

To display an itkImageBase using the System.Drawing namespace we must firstly use the re-
quired assemblies:

1 using System.Drawing;
2 using System.Drawing.Imaging;
3 using System.Windows.Forms;
4 using itk;

Next, we create and read a 2D 8-bit scalar image:

1 // Read the image
2 this.m_Image = itkImage_UC2.New();
3 this.m_Image.Read(filename);

Next, we set the pixel format to support 8-bit grayscale images:

1 // Set pixel format as 8-bit grayscale
2 PixelFormat format = PixelFormat.Format8bppIndexed;

11OpenGL supports a much broader range of pixel types. Tao is a .NET binding around the OpenGL library suitable
for use with ManagedITK: http://taoframework.com.

http://taoframework.com

ManagedITK: .NET Wrappers for ITK 13

Figure 4: Output from Examples/Images/itk.Examples.Images.Bitmap1.cs.

The data in Bitmap objects are not tightly packed, rows of bytes are stored in multiples of four (the
multiple-four width of an image known as the stride). If the width and stride are not equal, we must
perform some non-trivial operations to copy the image buffer into the Bitmap. However, if the width
and stride are equal, we can simply use the Bitmap constructor12:

1 // Width = Stride: simply use the Bitmap constructor
2 bitmap = new Bitmap(image.Size[0], // Width
3 image.Size[1], // Height
4 image.Size[0], // Stride
5 format , // PixelFormat
6 image.Buffer // Buffer
7);

Finally, we set the Bitmap.Palette:

1 // Set a color palette
2 bitmap.Palette = this.CreateGrayscalePalette(format , 256);

Executing the example as below opens the window shown in Figure 4:

> itk.Examples.Images.Bitmap1 cthead1.png

12The method described in this example uses the itk::Image::GetBufferPointer(). This is not an ideal solution
and — from discussions on the insight-developers mailing list — can not be guaranteed to exist in the future.
Making this method public has been considered poor design because it forces the itk::Image to store data in a
contiguous array. However, for the moment it remains a suitable means to obtain the image data.

ManagedITK: .NET Wrappers for ITK 14

4.2 Iterators

The source code for this section can be found in the file
Examples/Iterators/itk.Examples.Iterators.ImageRegionIterator1.cs.

This example shows how to use an ImageRegionIterator to iterate over the each pixel in an
image. The interesting aspect to note is the use of the foreach syntax.

We begin by creating and reading an image using an explicit type:

1 // Read an explicitly typed image
2 itkImageBase input = itkImage_UC2.New();
3 input.Read(args[0]);

Next, we allocate an empty image for the output:

1 // Allocate an empty output image
2 itkImageBase output = itkImage_UC2.New();
3 itkImageRegion region = input.LargestPossibleRegion;
4 output.SetRegions(region);
5 output.Allocate();
6 output.FillBuffer(0);
7 output.Spacing = input.Spacing;

Next, we create two iterators, one to walk the input image and one to walk the output image. Note
that iterators are created using the normal C# new command, this is because the native ITK iterators
are not derived from itk::SmartPointer and do not use the factory method of instantiation.

1 // Create iterators to walk the input and output images
2 itkImageRegionConstIterator_IUC2 inputIt;
3 itkImageRegionIterator_IUC2 outputIt;
4 inputIt = new itkImageRegionConstIterator_IUC2(input , region);
5 outputIt = new itkImageRegionIterator_IUC2(output , region);

We now walk over both images, setting the output value as the input value. Note the use of the
foreach statement: ManagedITK iterators implement the System.IEnumerable interface allowing
us to use this syntax (alternatively a simple for loop could have been used). Also note that the
foreach statement can only be used on one iterator, so we must remember to increment any other
iterators manually:

1 // Walk the images using the iterators
2 foreach (itkPixel pixel in inputIt)
3 {
4 outputIt.Set(pixel);
5 outputIt++;
6 }

This example can be executing using the following code to copy the input image:

> itk.Examples.Iterators.ImageRegionIterator1 cthead1.png cthead1_COPY.png

ManagedITK: .NET Wrappers for ITK 15

4.3 Filters

4.3.1 Gradient Magnitude

The source code for this section can be found in the file
Examples/Filters/itk.Examples.Filters.GradientMagnitude1.cs.

This example introduces how to use itkImageToImageFilter objects, with the
itkGradientMagnitudeImageFilter as a simple case study. The most important differ-
ence has to do with the itkImageSource.GetOutput() method.

Firstly, as usual, we use the itk namespace:

1 using itk;

For code clarity we can define an alias for the itkGradientMagnitudeImageFilter:

1 using FilterType = itk.itkGradientMagnitudeImageFilter;

Next, we create our input and output images, using the command line to specify the type. Note
that we have used the itkImageBase.New(itkImageBase image) method for the output image,
which creates an explicit type the same as the given image:

1 // Setup input and output images
2 itkImageBase input = itkImage.New(args[0]);
3 itkImageBase output = itkImage.New(input);

Next, we read the input image:

1 // Read the input image
2 input.Read(args[1]);

Creating and applying the filter is similar to native ITK, except the template arguments are moved to
the New() method. In the case below, we have specified the type parameters as input, output.
This creates the filter type by appending the itkObject.ManagedTypeString from all type pa-
rameters: eg. "IUC2" + "IUC2" = "IUC2IUC2":

1 // Apply the filter
2 FilterType filter = FilterType.New(input , output);
3 filter.SetInput(input);
4 filter.Update();

If the template parameters we specify do not create a valid ManagedTypeString when appended
together, we would receive an exception similar to below:

ManagedITK: .NET Wrappers for ITK 16

(a) Input (b) Output

Figure 5: Output from itk.Examples.Filters.GradientMagnitude1.cs.

itk.itkInvalidWrappedTypeException: Could not create an instance of
’itk.itkGradientMagnitudeImageFilter_IUC2 ’. The given type may not be supported
or may be invalid.
---> System.NullReferenceException:
The type ’itk.itkGradientMagnitudeImageFilter_IUC2 ’ could not be found in
ManagedITK.Filtering.Common , Version=0.0.0.0, Culture=neutral

at itk.itkGradientMagnitudeImageFilter.New(String mangledType)
--- End of inner exception stack trace ---
at itk.itkGradientMagnitudeImageFilter.New(String mangledType)
at itk.itkGradientMagnitudeImageFilter.New(INativePointer[] types)
at itk.Examples.Filters.GradientMagnitude1.Main(String[] args)

in itk.Examples.Filters.GradientMagnitude1.cs:line 26

Finally, we retrieve the output by calling itkImageSource.GetOutput() with the output object
(the object is required to specify the managed type). We could also use the GetOutput() method
which returns an IntPtr to the native type, but this is of little use in the current example.

1 filter.GetOutput(output);

Executing the example as below gives the output shown in Figure 5:

> itk.Examples.Filters.GradientMagnitude1 UC2 cthead1.png cthead1_G.png

4.3.2 Sigmoid (and Managed Events)

The source code for this section can be found in the file
Examples/Filters/itk.Examples.Filters.Sigmoid1.cs.

This example demonstrates how to observe native ITK events using managed events and
delegates (the managed type-safe equivalent of C-style function pointers).

ManagedITK: .NET Wrappers for ITK 17

We firstly create the input and output images, reading the desired type from the command line:

1 // Create input and output images
2 itkImageBase input = itkImage.New(args[0]);
3 itkImageBase output = itkImage.New(input);

Next, we read the input image from disk:

1 // Read the input image
2 input.Read(args[1]);

Now we create the filter, and set the input, output and filter parameters:

1 // Apply the Sigmoid filter
2 FilterType filter = FilterType.New(input , output);
3 filter.Started += new itkTimedEventHandler(filter_Started);
4 filter.Progress += new itkProgressHandler(filter_Progress);
5 filter.Ended += new itkTimedEventHandler(filter_Ended);
6 filter.SetInput(input);
7 filter.GetOutput(output);
8 filter.Alpha = Double.Parse(args[2]);
9 filter.Beta = Double.Parse(args[3]);

In the code block above note how we add observers to the Started, Progress, and Ended events.
To observe an event, we simply create a delegate which references a function containing the
desired logic for the event. For example, in the Started event handler we print out a string to the
console with the time the filter started:

1 static void filter_Started(itkObject sender , DateTime time)
2 {
3 string message = "{0}: Started at {1}";
4 itkProcessObject process = sender as itkProcessObject;
5 Console.Write(String.Format(message , process.Name , time));
6 }

Finally we write the output to disk. Note that the Write method will automatically update any
upstream filters:

1 // NOTE: Any upstream filters will be automatically updated

Executing the example as below gives the following output:

>itk.Examples.Filters.Sigmoid1 UC2 cthead1.png -60.0 90.0 cthead1_SIGMOID.png
itk.itkSigmoidImageFilter: Started at 19/01/2007 10:16:03 AM
001% 002% 003% 004% 005% 006% 007% 008% 009% 010%
011% 012% 013% 014% 015% 016% 017% 018% 019% 020%
021% 022% 023% 024% 025% 026% 027% 028% 029% 030%
031% 032% 033% 034% 035% 036% 037% 038% 039% 040%

ManagedITK: .NET Wrappers for ITK 18

041% 042% 043% 044% 045% 046% 047% 048% 049% 050%
051% 052% 053% 054% 055% 056% 057% 058% 059% 060%
061% 062% 063% 064% 065% 066% 067% 068% 069% 070%
071% 072% 073% 074% 075% 076% 077% 078% 079% 080%
081% 082% 083% 084% 085% 086% 087% 088% 089% 090%
091% 092% 093% 094% 095% 096% 097% 098% 099% 100%
itk.itkSigmoidImageFilter: Ended at 19/01/2007 10:16:03 AM

4.4 Segmentation

4.4.1 Binary Threshold (and Simple GUI)

The source code for this section can be found in the file
Examples/Filters/itk.Examples.Segmentation.FormBinaryThreshold1.cs.

This example shows how to use the itkBinaryThresholdImageFilter. In addition is shows
how to use System.Windows.Forms to control and monitor a filter which is running on a separate
thread.

Firstly we use various namespaces:

1 using System;
2 using System.IO;
3 using System.Drawing;
4 using System.Threading;
5 using System.Windows.Forms;

For sake of ease we introduce a type alias:

1 using FilterType = itk.itkBinaryThresholdImageFilter;

Using the Visual Studio Windows Designer, we create a Form with a menu containing two items:
“Open” and “Exit”. When the user clicks the “Open” menu item, the user will be prompted for an
image file name:

1 const String allext = "*.mhd;*.png;*.jpg;*.bmp;*.tif;*.vtk";
2
3 // Show an open file dialog
4 OpenFileDialog ofd = new OpenFileDialog();
5 ofd.CheckFileExists = true;
6 ofd.CheckPathExists = true;
7 ofd.Filter = "Meta Header files (*.mhd)|*.mhd";
8 ofd.Filter += "|PNG Image files (*.png)|*.png";
9 ofd.Filter += "|JPEG Image files (*.jpg)|*.jpg";

10 ofd.Filter += "|BMP Image files (*.bmp)|*.bmp";
11 ofd.Filter += "|TIFF Image files (*.tif)|*.tif";
12 ofd.Filter += "|VTK Image files (*.vtk)|*.vtk";
13 ofd.Filter += "|All Image files (" + allext + ")|" + allext;

ManagedITK: .NET Wrappers for ITK 19

14 ofd.FilterIndex = 7;
15 ofd.Multiselect = false;
16 ofd.RestoreDirectory = true;
17 ofd.Title = "Select image to process";
18 DialogResult result = ofd.ShowDialog(this);

If the user selects a valid file name and clicks “OK”, the processing thread will start:

1 // Start the processing thread
2 ParameterizedThreadStart threadStart;
3 threadStart = new ParameterizedThreadStart(this.DoWork);
4 Thread thread = new Thread(threadStart);
5 thread.Start(ofd.FileName);

In the new thread, we firstly determine the image information and create input and output images:

1 // Create the input and output types
2 itkImageBase input; itkImageBase output;
3 input = itkImage.New(itkPixelType.F, info.Dimension);
4 output = itkImage.New(itkPixelType.UC, info.Dimension);

After reading the input image, the filter is started:

1 // Apply the filter
2 FilterType filter = FilterType.New(input , output);
3 filter.Started += new itkTimedEventHandler(FilterStarted);
4 filter.Progress += new itkProgressHandler(FilterProgress);
5 filter.Ended += new itkTimedEventHandler(FilterEnded);
6 filter.SetInput(input);
7 filter.LowerThreshold = 100;
8 filter.UpperThreshold = 255;
9 filter.OutsideValue = 0;

10 filter.InsideValue = 255;
11 filter.Update();
12 filter.GetOutput(output);

The Started, Progress, and Ended events are observed with thread-safe methods which update
the GUI as the filter is running. For example, the progress observer increments a ProgressBar:

1 void FilterProgress(itkProcessObject sender , float progress)
2 {
3 // Make thread safe
4 if (this.InvokeRequired)
5 {
6 this.Invoke(new itkProgressHandler(this.FilterProgress),
7 sender , progress);
8 return;
9 }

10
11 // Update progress bar
12 this.stripProgressBar.Value = (int)(progress * 100F);
13 }

ManagedITK: .NET Wrappers for ITK 20

(a) Screen shot

(b) Input (c) Output

Figure 6: Output from itk.Examples.Segmentation.BinaryThreshold1.cs.

Executing the example as below gives the output shown in Figure 6:

>itk.Examples.Segmentation.BinaryThreshold1

4.4.2 Watershed (and Pipeline)

The source code for this section can be found in the file
Examples/Segmentation/itk.Examples.Segmentation.Watershed1.cs.

This example shows how to use the itkWatershedImageFilter. It also demonstrates the usage
of a pipeline.

Firstly, we use the itk namespace and in addition we create some aliases for code clarity:

1 using itk;
2
3 using PixelType = itk.itkPixelType;
4 using ImageType = itk.itkImageBase;
5 using WatershedType = itk.itkWatershedImageFilter;
6 using RelabelType = itk.itkRelabelComponentImageFilter;

ManagedITK: .NET Wrappers for ITK 21

(a) Input (b) Coloured Output (c) Coloured Overlay

Figure 7: Output from itk.Examples.Segmentation.Watershed1.cs.

Next, we create the input and output label images:

1 // Create the input and label images
2 ImageType input = itkImage.New(args[0]);
3 input.Read(args[1]);
4 ImageType label = itkImage.New(PixelType.UL, input.Dimension);

We now set up the watershed filter, noting that its New() method only expects a single type argu-
ment:

1 // Watershed
2 WatershedType filterWatershed = WatershedType.New(input);
3 filterWatershed.SetInput(input);
4 filterWatershed.Threshold = Double.Parse(args[2]);
5 filterWatershed.Level = Double.Parse(args[3]);
6 filterWatershed.Update();

Finally, we connect the filter output to a relabeller using similar syntax as native ITK:

1 // Relabel
2 RelabelType filterRelabel = RelabelType.New(label , label);
3 filterRelabel.SetInput(filterWatershed.GetOutput());
4 filterRelabel.Update();
5 filterRelabel.GetOutput(label);

Executing the example as below gives the output shown in Figure 7:

>itk.Examples.Segmentation.Watershed1 UC2 cthead1.png 0.3 0.22
cthead1_WATERSHED.mhd

ManagedITK: .NET Wrappers for ITK 22

4.4.3 Level Set Segmentation

The source code for this section can be found in the file
Examples/Segmentation/itk.Examples.Segmentation.LevelSet1.cs.

This example shows how to use the itkCurvesLevelSetImageFilter.

Firstly, we create an alias for code clarity:

1 using LevelSetType = itk.itkCurvesLevelSetImageFilter;

Next, we create the initial, speed, and output images by reading the dimensionality from the com-
mand line:

1 // Create the initial, feature and output images
2 itkPixelType pixeltype = itkPixelType.F;
3 uint Dimension = UInt32.Parse(args[0]);
4 itkImageBase initial = itkImage.New(pixeltype , Dimension);
5 itkImageBase speed = itkImage.New(pixeltype , Dimension);
6 itkImageBase output = itkImage.New(pixeltype , Dimension);
7 Console.WriteLine("Reading initial: " + args[1]);
8 initial.Read(args[1]);
9 Console.WriteLine("Reading speed: " + args[2]);

10 speed.Read(args[2]);

We now create and set up the itkCurvesLevelSetImageFilter:

1 // Level Set
2 LevelSetType levelset = LevelSetType.New(initial , speed ,
3 pixeltype);
4 levelset.Started += new itkTimedEventHandler(LevelSetStarted);
5 levelset.Iteration += new itkObjectHandler(LevelSetIteration);
6 levelset.Ended += new itkTimedEventHandler(LevelSetEnded);
7 levelset.SetInitialImage(initial);
8 levelset.SetFeatureImage(speed);
9 levelset.PropagationScaling = 5.0;

10 levelset.CurvatureScaling = 3.0;
11 levelset.AdvectionScaling = 1.0;
12 levelset.MaximumRMSError = 0.01;
13 levelset.NumberOfIterations = 600;
14 levelset.Update();
15 levelset.GetOutput(output);

We watch for the Started, Iteration, and Ended events. For the iteration event, we write out the
number of elapsed iteration in a nice block format:

1 static void LevelSetIteration(itkObject sender)
2 {
3 LevelSetType levelset = sender as LevelSetType;
4 UInt32 i = levelset.ElapsedIterations;

ManagedITK: .NET Wrappers for ITK 23

5 String str = i.ToString("000 ");
6 if (i == 1) Console.Write(str);
7 if (i % 100 == 0) Console.WriteLine();
8 if (i % 10 == 0) Console.Write(str);
9 }

Finally, we write the output:

1 // Write the output image to disk
2 Console.WriteLine("Writing output: " + args[3]);
3 output.Write(args[3]);

Executing the example as below gives the output shown in Figure 8:

>itk.Examples.Segmentation.LevelSet1 2 BrainProtonDensitySlice_INITIAL.mhd
BrainProtonDensitySlice_SPEED.mhd BrainProtonDensitySlice_LEVELSET.mhd

Reading initial: BrainProtonDensitySlice_INITIAL.mhd
Reading feature: BrainProtonDensitySlice_SPEED.mhd
Started: 4/04/2007 9:47:19 AM
001 010 020 030 040 050 060 070 080 090
100 110 120 130 140 150 160 170 180 190
200 210 220 230 240 250 260 270 280 290
300 310 320 330 340 350 360 370 380 390
400 410 420 430 440 450 460 470 480 490
500 510 520 530 540 550 560 570 580 590
600
Ended: 4/04/2007 9:47:20 AM
Writing output: BrainProtonDensitySlice_LEVELSET.mhd

4.5 Registration

The source code for this section can be found in the file
Examples/Registration/itk.Examples.Registration.Translation1.cs.

This example shows how to use the Registration wrappers. It requires four dif-
ferent assemblies: ManagedITK.Common.dll, ManagedITK.Interpolators.dll,
ManagedITK.Registration.dll, and ManagedITK.Transform.dll.

Firstly, we use the itk namespace and define some aliases:

1 using itk;
2
3 using ImageType = itk.itkImage_UC2;
4 using InterpolatorType = itk.itkLinearInterpolateImageFunction_IUC2D;
5 using TransformType = itk.itkTranslationTransform_D2;
6 using ResampleType = itk.itkResampleImageFilter_IUC2IUC2;
7 using MetricType = itk.itkMeanSquaresImageToImageMetric_IUC2IUC2;
8 using OptimizerType = itk.itkRegularStepGradientDescentOptimizer;
9 using RegistrationType = itk.itkImageRegistrationMethod_IUC2IUC2;

ManagedITK: .NET Wrappers for ITK 24

(a) Initial (b) Speed (c) Final

(d) 0 iterations (e) 50 iterations (f) 100 iterations (g) 150 iterations (h) 200 iterations (i) 250 iterations

Figure 8: Output from itk.Examples.Segmentation.LevelSet1.cs.

ManagedITK: .NET Wrappers for ITK 25

Next, we read the fixed image from the command line:

1 // Read the fixed image from the command line
2 itkImageBase imageFixed = ImageType.New();
3 imageFixed.Read(args[0]);

We now construct a moving image by translating the fixed image by a known amount:

1 // Create a moving image
2 itkImageBase imageMoving = itkImage.New(imageFixed);
3 InterpolatorType interpolator = InterpolatorType.New();
4 TransformType transform = TransformType.New();
5 transform.Translate(new itkVector(7.5, 12.0));
6 ResampleType filterResample = ResampleType.New();
7 filterResample.SetInput(imageFixed);
8 filterResample.SetInterpolator(interpolator);
9 filterResample.SetTransform(transform);

10 filterResample.OutputSize = imageFixed.Size;
11 filterResample.OutputSpacing = imageFixed.Spacing;
12 filterResample.Update();
13 filterResample.GetOutput(imageMoving);

Next, we set up the metric and optimizer (the optimizer values were taken from the ITK Software
Guide):

1 // Create metric
2 MetricType metric = MetricType.New();
3
4 // Create optimiser
5 OptimizerType optimizer = OptimizerType.New();
6 optimizer.Iteration += new itkObjectHandler(optimizer_Iteration);
7 optimizer.MaximumStepLength = 4.00;
8 optimizer.MinimumStepLength = 0.01;
9 optimizer.NumberOfIterations = 200;

Note that we add an observer to the optimizer Iteration event:

1 static void optimizer_Iteration(itkObject sender)
2 {
3 OptimizerType optimizer = sender as OptimizerType;
4 String message = "{0}: {1}";
5 String iteration = optimizer.CurrentIteration.ToString("000");
6 String position = optimizer.CurrentPosition.ToString();
7 Console.WriteLine(String.Format(message , iteration , position));
8 }

Finally, we plug everything together and start the registration algorithm:

ManagedITK: .NET Wrappers for ITK 26

1 // Create registration method
2 RegistrationType registration = RegistrationType.New();
3 registration.SetFixedImage(imageFixed);
4 registration.SetMovingImage(imageMoving);
5 registration.SetTransform(transform);
6 registration.SetInterpolator(interpolator);
7 registration.SetMetric(metric);
8 registration.SetOptimizer(optimizer);
9 registration.InitialTransformParameters = transform.Parameters;

10 registration.StartRegistration();

Executing the example as below gives the output shown in Figure 9:

>itk.Examples.Registration.Translation1 cthead1.png
START: [007.50, 012.00]
000: [008.20, 008.06]
001: [005.34, 005.28]
002: [002.74, 002.23]
003: [001.32, -001.51]
004: [-001.14, -004.66]
005: [-003.17, -008.11]
006: [-006.29, -010.61]
007: [-008.82, -013.71]
008: [-007.60, -012.13]
009: [-005.97, -010.97]
010: [-006.83, -011.48]
011: [-007.63, -012.08]
012: [-007.15, -011.93]
013: [-007.40, -011.94]
014: [-007.64, -012.00]
015: [-007.52, -012.01]
016: [-007.40, -012.01]
017: [-007.46, -012.00]
018: [-007.52, -011.99]
019: [-007.49, -012.00]
020: [-007.50, -012.00]
END: [-007.50, -012.00]

4.6 Meshes

The source code for this section can be found in the file
Examples/Meshes/itk.Examples.Meshes.TriangleMesh1.cs.

This example shows how to convert a triangle mesh to a binary image.

Firstly, we declare some typedefs for use with meshes:

1 // Setup typedefs
2 itkPixelType pixel = itkPixelType.F;
3 itkDimension dim = new itkDimension (3);
4 itkMeshTraits traits = itkMeshTraits.Static();

ManagedITK: .NET Wrappers for ITK 27

(a) Fixed (b) Fixed minus Moving (c) Fixed minus Result

Figure 9: Output from itk.Examples.Registration.Translation1.cs.

Next, we use itkRegularSphereMeshSource to programmatically create a mesh. Notice that the
traits object is passed to the mesh New() method:

1 // Create mesh
2 itkMesh mesh = itkMesh.New(pixel , dim , traits);
3 itkRegularSphereMeshSource source =
4 itkRegularSphereMeshSource.New(mesh);
5 source.Center = new itkPoint(32.0, 32.0, 32.0);
6 source.Scale = new itkVector(32.0, 32.0, 32.0);
7 source.Resolution = 4;
8 source.Update();
9 source.GetOutput(mesh);

Finally, we convert the mesh to an image using itkTriangleMeshToBinaryImageFilter:

1 // Convert mesh to image
2 itkImageBase output = itkImage.New(itkPixelType.UC, dim);
3 itkTriangleMeshToBinaryImageFilter filter =
4 itkTriangleMeshToBinaryImageFilter.New(mesh , output);
5 filter.SetInput(mesh);
6 filter.Tolerance = 0.001;
7 filter.Size = new itkSize(100, 100, 100);
8 filter.Update();
9 filter.GetOutput(output);

4.7 IronPython

The source code for this section can be found in the file
Examples/IronPython/IronPythonSpeedImage1.cs.

This example simply demonstrates that ManagedITK can be used by any language which tar-

ManagedITK: .NET Wrappers for ITK 28

gets the .NET CLR, including IronPython13. This example computes a speed image useful for
the itkFastMarchingImageFilter:

1 # Import default references
2 import System , clr, sys
3
4 # Import ITK references
5 clr.AddReference("ManagedITK.Common")
6 clr.AddReference("ManagedITK.Filtering.Common")
7 clr.AddReference("ManagedITK.Filtering.Intensity")
8 from itk import *
9

10 # Create aliases
11 ImageType = itkImage_F2
12 GradientFilterType = itkGradientMagnitudeRecursiveGaussianImageFilter
13 SigmoidFilterType = itkSigmoidImageFilter
14 RescaleFilterType = itkRescaleIntensityImageFilter
15
16 # Create the output image
17 output = ImageType.New()
18
19 # Open input image
20 image = ImageType.New()
21 image.Read("BrainProtonDensitySlice.png")
22
23 # Gradient Magnitude
24 filterGrad = GradientFilterType.New(image , image)
25 filterGrad.SetInput(image)
26 filterGrad.Sigma = 1.3
27 filterGrad.NormalizeAcrossScale = False
28
29 # Sigmoid
30 filterSigmoid = SigmoidFilterType.New(image , image)
31 filterSigmoid.SetInput(filterGrad.GetOutput())
32 filterSigmoid.Alpha = -0.3
33 filterSigmoid.Beta = 3.0
34
35 # Rescale
36 filterRescale = RescaleFilterType.New(image , image)
37 filterRescale.SetInput(filterSigmoid.GetOutput())
38 filterRescale.OutputMinimum = itkPixel(image.PixelType , 0.0)
39 filterRescale.OutputMaximum = itkPixel(image.PixelType , 1.0)
40
41 # Write the output
42 filterRescale.GetOutput(output)
43 output.Write("BrainProtonDensitySlice_SPEED.mhd")

Executing the example as below gives the output shown in Figure 10:

13IronPython is an implementation of the Python programming language running on .NET. It is well integrated with
the rest of the .NET Framework and makes all .NET libraries easily available to Python programmers, while maintaining
full compatibility with the Python language. See http://www.codeplex.com/IronPython/Wiki/View.aspx.

http://www.codeplex.com/IronPython/Wiki/View.aspx

ManagedITK: .NET Wrappers for ITK 29

>ipy IronPythonSpeedImage1.py

(a) Input (b) Speed Image Output

Figure 10: Output from Examples/IronPython/IronPythonSpeedImage1.py.

5 Frequently Asked Questions (FAQ)

Why do I need to install vcredist x86?

ManagedITK is a set of C++/CLI wrapper classes around the native ITK code: it is not 100%
managed code. As a result of using the C++/CLI Interop mechanism for mixing native and man-
aged code, all ManagedITK objects depend on the x86 Microsoft.VC80.CRT side-by-side as-
semblies. The vcredist x86 executable packages these dependencies and installs them to the
C:/Windows/WinSxS directory. The pre-compiled assemblies were compiled with Visual Studio 8.0
SP1, and therefore the SP1 version of vcredist x86 must be used (which is included with the
pre-compiled assemblies)14.

Does ManagedITK work with Mono?

As far we know, ManagedITK will not work with Mono (and hence on Linux platforms supporting by
Mono). ManagedITK is not 100% managed code, it depends on the x86 Microsoft.VC80.CRT
side-by-side assemblies. This dependency (as far as we know. . .) binds it to the Windows platform.
There has been some talk of migrating WrapITK (a totally separate project) to a pure SWIG imple-
mentation which could allow for the generation of 100% pure C# wrappers (which would probably
be compatible with Mono).

14Microsoft has not yet release a version of vcredist x86 SP1. However the RTM version can be downloaded here.

http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=32BC1BEE-A3F9-4C13-9C99-220B62A191EE

ManagedITK: .NET Wrappers for ITK 30

Are all ManagedITK objects managed wrappers around native objects?

No, not all ManagedITK objects are managed wrappers around native ITK objects. To simplify
the use of common objects most of the objects in the ManagedITK.Common assembly are 100%
managed (except for the explicit itkImage types eg. itkImage UC2). Unfortunately, this design
decision has resulted in performance issues with the ManagedITK.Image.Iterators assembly,
meaning the line between the managed and native worlds may have to be moved in the near future.

How do I use the ManagedITK assemblies?

Section 3.1 explains how to use the pre-compiled ManagedITK assemblies. Basically you cre-
ate a project, right-click “References”, select “Add Reference...”, browse to the location con-
taining the ManagedITK assemblies, select the desired assemblies (ensuring to always select
ManagedITK.Common.dll), and click “OK”. The Examples folder contains numerous projects using
the ManagedITK assemblies in this manner.

How do I determine the types parameter for New() methods?

All natively wrapped objects have two types of wrappers: explicit-type wrap-
pers (eg. itkThresholdImageFilter IF2) and runtime-type wrappers (eg.
itkThresholdImageFilter). The runtime-type wrappers require a valid sequence of type
parameters passed into the New() method.

You can determine which parameters to pass the New() method by inspecting the explicit-
type wrappers in the Object Browser. To open the Object Browser in Visual Studio select
View>Object Browser. Expand the desired assembly and scroll to the explicit-type wrap-
pers for the filter or object. In the above example the itkThresholdImageFilter has a
number of explicit types: itkThresholdImageFilter IF2, itkThresholdImageFilter IF3,
itkThresholdImageFilter UC2, itkThresholdImageFilter UC3, etc. The suffix (ie. “IF2”)
indicates it expects a single image type to be passed to the New() method.

Some more complex examples include itkAddImageFilter which expects three im-
ages (indicated by the “IF2IF2IF2” suffix) or itkLinearInterpolateImageFunction
which expects one image and a pixel type (indicated by the “IF2D” suffix). See
Examples/Interpolators/itk.Examples.Interpolators.Linear1.cs for an example.

How do I monitor ITK events?

Common native ITK events (ie. Started, Ended, Aborted, Modified, Iteration, and Progress) have
been exposed as managed events. To monitor the managed event, simply use a delegate to
attach an observer. See Section 4.3.2 for an in-depth example.

ManagedITK: .NET Wrappers for ITK 31

Why is my ImageIterator so slow?

It is a known issue that ImageIterator objects in ManagedITK are slow. This results from the
managed-to-native transition which occurs when incrementing the iterator. The problem may be
alleviated in the future by simplifying or removing the itkPixel class. In the meantime — if speed
is an issue for your application — you might consider creating a native custom filter and wrapping it
using an external project.

How do I use ManagedITK and OpenGL?

ManagedITK can be easily integrated with OpenGL using Tao (Tao a set of .NET wrappers around
OpenGL functions created as part of the Mono project). Go to http://taoframework.com to download
the latest assemblies.

How do I use ManagedITK and VTK?

ManagedITK can be integrated with VTK using a VTK .NET wrapper, of which at least two cur-
rently exist: http://vtkdotnet.sourceforge.net or http://herakles.zcu.cz/research/vtk.net. An external
project is supplied within the Examples/ExternalProjects/VTK folder which provides wrappers
for ImageToVTKImageFilter and VTKImageToImageFilter. View the Readme.txt file in the
project directory for build instructions.

How do I show an image using System.Drawing.Bitmap?

See Section 4.1.6 which walks through Examples/Images/itk.Examples.Images.FormBitmap1.cs.

How do I wrap an external project?

There will probably come a time when you want to wrap one of your newly created customised filters.
Rather than integrate this into the ManagedITK source structure, an external project mechanism
(similar to WrapITK) has been provided.

The Examples/ExternalProjects/Topology folder contains an example of using such an ex-
ternal project. In this example we wrap a distance-ordered homotopic thinning filter taken from the
Insight Journal [2].

The first step is to create a CMakeLists.txt file specifying that we are using ManagedITK to wrap
an external project. An important aspect to note is the setting of both the group and subgroup
names (“Image” and “Topology” in this example).

1 PROJECT(WrapTopology)
2
3 # Find required packages

http://taoframework.com
http://vtkdotnet.sourceforge.net
http://herakles.zcu.cz/research/vtk.net

ManagedITK: .NET Wrappers for ITK 32

4 FIND_PACKAGE(ITK REQUIRED)
5 FIND_PACKAGE(ManagedITK REQUIRED)
6
7 # Use required packages
8 INCLUDE(${ITK_USE_FILE})
9 INCLUDE(${MANAGED_ITK_USE_FILE})

10
11 # Wrap the project
12 BEGIN_MANAGED_WRAP_EXTERNAL_PROJECT("Topology")
13 SET(MANAGED_WRAPPER_OUTPUT "${CMAKE_BINARY_DIR}")
14 END_MANAGED_WRAP_EXTERNAL_PROJECT()

The next step is to create a CMake file to wrap each class. In our example we
created two such files: managed itkChamferDistanceTransformImageFilter.cmake and
managed itkSkeletonizeImageFilter.cmake. Each CMake wrapper file must specify the
class to wrap, the template parameters, and the managed methods/properties to emit. Look through
the Source/Modules folders for other examples of such files.

1 # Begin the wrapping
2 WRAP_CLASS("itk::SkeletonizeImageFilter")
3
4 # Wrap the class for INT and REAL types
5 WRAP_IMAGE_FILTER_INT(2)
6 WRAP_IMAGE_FILTER_REAL(2)
7
8 # Create a method body
9 SET(body "")

10 SET(body "${body}m_PointerToNative ->SetOrderingImage(")
11 SET(body "${body}(NativeType::OrderingImageType*)image ->NativePointer")
12 SET(body "${body});")
13
14 # Emit a managed method
15 BEGIN_MANAGED_METHOD("SetOrderingImage")
16 SET(MANAGED_METHOD_SUMMARY "Set the ordering (ie. distance) image.")
17 SET(MANAGED_METHOD_RETURN_TYPE "void")
18 SET(MANAGED_METHOD_PARAMS "itkImageBaseˆ image")
19 SET(MANAGED_METHOD_TYPE_BODY "${body}")
20 SET(MANAGED_METHOD_WRAPPER_BODY "iInstance ->SetOrderingImage(image);")
21 END_MANAGED_METHOD()
22
23 # Create a method body
24 SET(body "")
25 SET(body "${body}m_PointerToNative ->SetOrderingImage(")
26 SET(body "${body}(NativeType::OrderingImageType*)imgPtr.ToPointer()")
27 SET(body "${body});")
28
29 # Emit a managed method
30 BEGIN_MANAGED_METHOD("SetOrderingImage")
31 SET(MANAGED_METHOD_SUMMARY "Set the ordering (ie. distance) image.")
32 SET(MANAGED_METHOD_RETURN_TYPE "void")
33 SET(MANAGED_METHOD_PARAMS "IntPtr imgPtr")
34 SET(MANAGED_METHOD_TYPE_BODY "${body}")

ManagedITK: .NET Wrappers for ITK 33

35 SET(MANAGED_METHOD_WRAPPER_BODY "iInstance ->SetOrderingImage(imgPtr);")
36 END_MANAGED_METHOD()
37
38 # End the wrapping
39 END_WRAP_CLASS()

Next, open CMake and point it to the external project folder, and configure. Run the
FinishCMake.bat file created in the external project folder and then open the generated solution
file. Choose the build type (eg. Debug, Release, etc.) and build the project.

6 Conclusion

This article presented ManagedITK: a set of .NET wrappers for the Insight Toolkit (ITK). These
wrappers have a number of nice features including: support for all CLR languages (including C#,
VB.NET, and IronPython), the ability to rapidly prototype graphical user interfaces using Windows
Forms, and simplified event handling. Various examples were discussed. Future development
should focus on the issue of reducing the managed-to-native transition overhead (particularly for
ImageIterator objects), increasing the coverage (especially to include support for complex IO,
meshes, point sets, and deformable registration), and adding automated regression tests. For
suggestions, additions or bugs, feel free to contact us15.

15Corresponding author: Dan Mueller: d.mueller@qut.edu.au or dan.muel@gmail.com.

mailto:d.mueller@qut.edu.au
mailto:dan.muel@gmail.com

ManagedITK: .NET Wrappers for ITK 34

References

[1] Wikipedia Community. Microsoft .NET Framework. Technical report, Wikimedia Foundation,
2007.
http://en.wikipedia.org/wiki/Microsoft .NET Framework. 1

[2] Julien Lamy. Digital topology. The Insight Journal, July - December, 2006. 5

[3] Gaetan Lehmann, Zachary Pincus, and Benoit Regrain. WrapITK: Enhanced languages support
for the Insight Toolkit. The Insight Journal, January - June, 2006. 1

[4] T. Yoo, M. Ackerman, W. Lorensen, W. Schroeder, V. Chalana, S. Aylward, D. Metaxes, and
R. Whitaker. Engineering and algorithm design for an image processing API: A technical report
on ITK - the Insight Toolkit. Proc. of Medicine Meets Virtual Reality, pages 586–592, 2002. 1

http://en.wikipedia.org/wiki/Microsoft_.NET_Framework

	1 Introduction
	2 Features
	3 Using ManagedITK
	3.1 Using the Pre-compiled Assemblies
	3.2 Compiling the Assemblies

	4 Examples
	4.1 Images
	4.1.1 Allocating an Image
	4.1.2 Reading Image Information
	4.1.3 Reading and Writing Images
	4.1.4 Reading DICOM Images
	4.1.5 Reading and Writing Image Series
	4.1.6 Displaying images using System.Drawing.Bitmap

	4.2 Iterators
	4.3 Filters
	4.3.1 Gradient Magnitude
	4.3.2 Sigmoid (and Managed Events)

	4.4 Segmentation
	4.4.1 Binary Threshold (and Simple GUI)
	4.4.2 Watershed (and Pipeline)
	4.4.3 Level Set Segmentation

	4.5 Registration
	4.6 Meshes
	4.7 IronPython

	5 Frequently Asked Questions (FAQ)
	Why do I need to install vcredist_x86?
	Does ManagedITK work with Mono?
	Are all ManagedITK objects managed wrappers around native objects?
	How do I use the ManagedITK assemblies?
	How do I determine the types parameter for New() methods?
	How do I monitor ITK events?
	Why is my ImageIterator so slow?
	How do I use ManagedITK and OpenGL?
	How do I use ManagedITK and VTK?
	How do I show an image using System.Drawing.Bitmap?
	How do I wrap an external project?

	6 Conclusion

