
Slice by slice filtering with ITK

Gaëtan Lehmann

February 19, 2007

INRA, UMR 1198; ENVA; CNRS, FRE 2857, Biologie du Développement et Reproduction, Jouy en Josas,
F-78350, France

Abstract

While filtering in N dimensions is a main feature of ITK, filtering an image in N-1 dimensions, slice by
slice, can be very useful in many cases. Currently, this operation require a consequent amount of work
to be done with ITK. A new filter is provided with this article to perform this operation with only a few
lines of code.

1 Description and code example

This filter is better descibed by a simple example. For example, suppose we want to perform a median
filtering on all the slices of an image1

We first do the standard includes, and check the command line arguments.

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkSimpleFilterWatcher.h"

#include "itkMedianImageFilter.h"
#include "itkSliceBySliceImageFilter.h"

int main(int argc, char * argv[])
{

if(argc != 3)
{
std::cerr << "usage: " << argv[0] << " input output" << std::endl;
exit(1);
}

The dimension of the image, the pixel type, and the image typeare declared. A file reader is created.

1SliceBySliceImageFilter is not required in that case: the most simple solution is to set the radius to 0 on one dimension -that’s
only an example.

2

const int dim = 3;
typedef unsigned char PType;
typedef itk::Image< PType, dim > IType;

typedef itk::ImageFileReader< IType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(argv[1]);

We then declare the type of the SliceBySliceImageFilter, instantiate a filter, and set the image from the reader as input.
At this point, the filter can’t do anything: the developper have to give him a filter which will be used internally to
perform the transform on all the classes.

typedef itk::SliceBySliceImageFilter< IType, IType > FilterType;
FilterType::Pointer filter = FilterType::New();
filter->SetInput(reader->GetOutput());

We declare the type of the internal filter - a median - using thetype defined in the SliceBySliceImageFilter, instan-
tiate it, and set the options correctly. InternalInputImageType, and InternalOutputImageType are the same type than
the input and output image type of the SliceBySliceImageFilter, but decreased of one dimension - here both are
itk::Image< unsigned char, 2 >.

typedef itk::MedianImageFilter< FilterType::InternalInputImageType,
FilterType::InternalOutputImageType > MedianType;

MedianType::Pointer median = MedianType::New();
MedianType::InputSizeType rad;
rad.Fill(5);
median->SetRadius(rad);

The median is passed to the slice by slice filter usingSetFilter().

filter->SetFilter(median);

Finally, the output is wrote to a file. WhenUpdate() is called, the slice by slice filter runs the median filter on all the
slices of the image, and store the result in its output image.The dimension reduced to pass to dimension N-1 can be
selected withSetDimension() and defaults to the highest one.

itk::SimpleFilterWatcher watcher(filter, "filter");

typedef itk::ImageFileWriter< IType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetInput(filter->GetOutput());
writer->SetFileName(argv[2]);
writer->Update();

return 0;
}

2 Usage with a full pipeline

SliceBySliceImageFilter is not restricted to a single filter, and can also be used with a full pipeline. Again, an example
will help to describe the usage:

We first do the standard includes, and check the command line arguments.

3

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkSimpleFilterWatcher.h"

#include "itkAddImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkSliceBySliceImageFilter.h"

int main(int argc, char * argv[])
{

if(argc != 3)
{
std::cerr << "usage: " << argv[0] << " input output" << std::endl;
exit(1);
}

The dimension of the image, the pixel type, and the image typeare declared. A file reader is created.

const int dim = 3;

typedef unsigned char PType;
typedef itk::Image< PType, dim > IType;

typedef itk::ImageFileReader< IType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(argv[1]);

In this example, a different pixel type is used in the 2D pipeline than the one used in the 3D pipeline, so we must
declare the image types, and the filter types used in the 2D pipeline.

typedef itk::Image< unsigned short, dim-1 > US2Type;
typedef itk::Image< unsigned char, dim-1 > UC2Type;

typedef itk::AddImageFilter< UC2Type, UC2Type, US2Type > AddType;
AddType::Pointer add = AddType::New();

typedef itk::RescaleIntensityImageFilter< US2Type, UC2Type > RescaleType;
RescaleType::Pointer rescale = RescaleType::New();

The two filters of the 2D pipeline are linked together.

rescale->SetInput(add->GetOutput());

The SliceBySliceImageFilter is instantiated with two morearguments than in the previous example: The type of the in-
put filter in the 2D pipeline (AddType) and the type of the output filter in the 2D pipeline (RescaleType). By default, the
type of the input and output filters isitk :: ImageToImageFilter < itk :: Image < InputImageType, ImageDimension−
1 >, itk :: Image < Out putImageType, ImageDimension−1>>. Note that it is not always needed to provide those
types when using a pipeline.

4

typedef itk::SliceBySliceImageFilter< IType, IType, AddType, RescaleType > FilterType;
FilterType::Pointer filter = FilterType::New();

The input filter takes two inputs, so we must provide two inputto the SliceBySliceImageFilter.

filter->SetInput(0, reader->GetOutput());
filter->SetInput(1, reader->GetOutput());

The input and the output filter are not the same so we have to usethe SetInputFilter() and SetOutputFilter() methods
instead of SetFilter().

filter->SetInputFilter(add);
filter->SetOutputFilter(rescale);

Finally, the output is wrote to a file. WhenUpdate() is called, the slice by slice filter runs the 2D pipeline on allthe
slices of the image, and store the result in its output image.The dimension reduced to pass to dimension N-1 can be
selected withSetDimension() and defaults to the highest one.

itk::SimpleFilterWatcher watcher(filter, "filter");

typedef itk::ImageFileWriter< IType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetInput(filter->GetOutput());
writer->SetFileName(argv[2]);
writer->Update();

return 0;
}

3 Improvement since revision 1 and future work

Since the first revision, the SliceBySliceImageFilter has been improved to suppport:

• several inputs

• several outputs

• a pipeline of filters

It still lack some features:

• the ability to have the input and output image of different size

• the ability to take several inputs of different types

• the ability to produce several outputs of different types

The first feature can reasonably be done. The two last ones looks very difficult to do, and will probably never be
implemented.

4 Conclusion

The new provided class gives an easy way to perform a slice by slice transform of an image.

References 5

References

[1] L. Ibanez and W. Schroeder. The ITK Software Guide. Kitware, Inc. ISBN 1-930934-10-6,
http://www.itk.org/ItkSoftwareGuide.pdf, 2003.

	Description and code example
	Usage with a full pipeline
	Improvement since revision 1 and future work
	Conclusion

