Slice by slice filtering with ITK

Gaétan Lehmann

February 19, 2007

INRA, UMR 1198; ENVA; CNRS, FRE 2857, Biologie du Développent et Reproduction, Jouy en Josas,
F-78350, France

Abstract

While filtering in N dimensions is a main feature of ITK, filleg an image in N-1 dimensions, slice by
slice, can be very useful in many cases. Currently, thisater require a consequent amount of work
to be done with ITK. A new filter is provided with this article perform this operation with only a few
lines of code.

1 Description and code example

This filter is better descibed by a simple example. For examglippose we want to perform a median
filtering on all the slices of an image

We first do the standard includes, and check the commandrguereents.

#include "itkl mageFil eReader. h"
#include "itklmageFileWiter.h"
#include "itkSinpl eFilterWatcher.h"

#include "itkMedi anl mageFilter.h"
#include "itkSliceBySlicel mageFilter.h"

int main(int argc, char * argv[])

{
if(argc '=3)
{
std::cerr << "usage: " << argv[0] << " input output" << std::endl;
exit(l);
}

The dimension of the image, the pixel type, and the image éaypeleclared. A file reader is created.

1sliceBySlicelmageFilter is not required in that case: thesnsimple solution is to set the radius to O on one dimenstbat's
only an example.

const int dim=3;
typedef unsigned char PType;
typedef itk::lmage< PType, dim> |Type;

typedef itk::ImageFil eReader< |Type > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();
reader->SetFi | eNane(argv[1]);

We then declare the type of the SliceBySlicelmageFiltetantiate a filter, and set the image from the reader as input.
At this point, the filter can’t do anything: the developper@do give him a filter which will be used internally to
perform the transform on all the classes.

typedef itk::SliceBySlicelmageFilter< |Type, |Type > FilterType;
FilterType:: Pointer filter = FilterType::New();
filter->Setlnput(reader->CetCQutput());

We declare the type of the internal filter - a median - usingtyipe defined in the SliceBySlicelmageFilter, instan-
tiate it, and set the options correctly. Internallinputl@@gpe, and InternalOutputimageType are the same type than
the input and output image type of the SliceBySlicelmagdeFibut decreased of one dimension - here both are
itk::Image< unsigned char, 2 >.

typedef itk::MedianlmgeFilter< FilterType::InternallnputlmageType,
FilterType::Internal Qut put | mageType > Medi anType;

Medi anType: : Poi nter nmedian = Medi anType: : New() ;

Medi anType: : I nput Si zeType rad;

rad. Fill(5);

medi an- >Set Radi us(rad);

The median is passed to the slice by slice filter uSetgi | ter ().

filter->SetFilter(nedian);
Finally, the output is wrote to a file. Whepdat e() is called, the slice by slice filter runs the median filter drtta
slices of the image, and store the result in its output im3dee dimension reduced to pass to dimension N-1 can be
selected wittBet Di nensi on() and defaults to the highest one.

itk::SinpleFilterWatcher watcher(filter, "filter");

typedef itk::lmgeFileWiter< |Type > WiterType;

WiterType::Pointer witer = WiterType::New();

writer->Setlnput(filter->GetQutput());

writer->SetFileNane(argv[2]);

writer->Update();

return 0;

2 Usage with a full pipeline

SliceBySlicelmageFilter is not restricted to a single fjl@nd can also be used with a full pipeline. Again, an example
will help to describe the usage:

We first do the standard includes, and check the commandrinarents.

#include "itkl mageFil eReader. h"
#include "itklmageFileWiter.h"
#include "itkSinpl eFilterWatcher.h"

#include "itkAddl mageFilter.h"

#include "itkRescal el ntensitylmageFilter.h"
#include "itkSliceBySlicel nageFilter.h"

int main(int argc, char * argv[])

{
if(argc '=3)
{
std::cerr << "usage: " << argv[0] << " input output" << std::endl;
exit(l);
}

The dimension of the image, the pixel type, and the image éaypeleclared. A file reader is created.

const int dim= 3;

typedef unsigned char PType;
typedef itk::lmage< PType, dim> |Type;

typedef itk::lmgeFil eReader< | Type > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();
reader->Set Fi | eNane(argv[1]);

In this example, a different pixel type is used in the 2D gipelthan the one used in the 3D pipeline, so we must
declare the image types, and the filter types used in the 28ip&

typedef itk::lmge< unsigned short, dim1l > US2Type;
typedef itk::lmge< unsigned char, dim1l > UC2Type;

typedef itk::AddlmageFilter< UCType, UCType, US2Type > AddType;
AddType: : Pointer add = AddType:: New();

typedef itk::RescalelntensitylmgeFilter< US2Type, UC2Type > Rescal eType;
Rescal eType: : Pointer rescal e = Rescal eType:: New();

The two filters of the 2D pipeline are linked together.
rescal e->Set I nput (add->Get Qutput());

The SliceBySlicelmageFilter is instantiated with two marguments than in the previous example: The type of the in-
put filter in the 2D pipeline (AddType) and the type of the auttfiiter in the 2D pipeline (RescaleType). By default, the
type of the input and output filtersitk :: ImageTol mageFilter < itk :: Image < InputlmageType, | mageDimension —

1 >,itk :: Image < Out putl mageType, ImageDimension — 1 >>. Note that it is not always needed to provide those
types when using a pipeline.

typedef itk::SliceBySlicelnmageFilter< |Type, |Type, AddType, Rescal eType > FilterType;
FilterType:: Pointer filter = FilterType::New();

The input filter takes two inputs, so we must provide two injouhe SliceBySlicelmagekFilter.

filter->Setlnput(0, reader->CGetQutput());
filter->Setlnput(1, reader->CGetQutput());

The input and the output filter are not the same so we have tthesgetinputFilter() and SetOutputFilter() methods
instead of SetFilter().

filter->SetlnputFilter(add);
filter->SetQutputFilter(rescale);

Finally, the output is wrote to a file. Wheipdat e() is called, the slice by slice filter runs the 2D pipeline onthé#
slices of the image, and store the result in its output imddee dimension reduced to pass to dimension N-1 can be
selected wittBet Di nensi on() and defaults to the highest one.

itk::SinpleFilterWatcher watcher(filter, "filter");

typedef itk::lmgeFileWiter< |Type > WiterType;
WiterType::Pointer witer = WiterType:: New();
witer->Setlnput(filter->CetQutput());
writer->SetFileNanme(argv[2]);

writer->Update();

return 0;

3 Improvement since revision 1 and future work

Since the first revision, the SliceBySlicelmageFilter hasbimproved to suppport:

e several inputs
e several outputs

e a pipeline of filters
It still lack some features:

e the ability to have the input and output image of differemesi
o the ability to take several inputs of different types

e the ability to produce several outputs of different types

The first feature can reasonably be done. The two last onés heery difficult to do, and will probably never be
implemented.

4 Conclusion

The new provided class gives an easy way to perform a slicéidg/tsansform of an image.

References 5

References

[1] L. Ibanez and W. Schroeder. The ITK Software Guide. Kitware, Inc. ISBN 1-930934-10-6,
http://www.itk.org/ItkSoftwareGuide.pdf, 2003.

	Description and code example
	Usage with a full pipeline
	Improvement since revision 1 and future work
	Conclusion

