FFT shift

Gaétan Lehmann

November 6, 2006

INRA, UMR 1198; ENVA; CNRS, FRE 2857, Biologie du Développent et Reproduction, Jouy en Josas,
F-78350, France

Abstract

A common usage when working with Fourier transform is to tstiie the image to put the zero-
frequency component in the center of the image. This cantibh comes with a filter to perform this
transform.

1 Description

This filter is multitreaded and works with any dimensions iaesof image, and with any pixel type. Itis
very similar to the fftshift and ifftshift function of matta

When the size of the image is odd on one dimension or moregipeirig the transform twice will not pro-
duce the same image than the input, as shown in the Figured@etToright, the optiorBet | nver se(true)
has to be used.

2 Code sample

The filter is very simple, and there shouldn’t be any problenugde it. Please look at check.cxx in the tar
ball for an example.

#include "itkl mageFil eReader. h"
#include "itklmageFileWiter.h"
#include "itkConmmand. h"

#include "itkSinpl eFilterWatcher.h"
#include "itkRGBPi xel . h"

#include "itkFFTShi ftlmageFilter.h"

int main(int argc, char * argv[])

{

if(argc '=4)

Figure 1:

{

std:
std:
std:
std:
std:

.cerr
.cerr
.cerr
.cerr
.cerr

exit(1);

}

(a) input image (b) shifted image. The zero-frequency components are
now centered.

Result of the transform on the log of the modulushefftt transform of a real image.

<<

<< "
<< "

<<
<<

"usage: " << argv[0] << " inputlmage outputlmge inverse" << std::endl;

i nput | mage: The input image." << std::endl;

out put I mage: The output inage." << std::endl;

" inverse: 0, to performa forward transform or 1 to perfornt << std::endl;
! an inverse transform" << std::endl;

const int dim= 3;

typedef itk::RGBPi xel < unsigned char > PType;
typedef itk::lmage< PType, dim> |Type;

typedef itk::ImageFil eReader< |Type > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();
reader->Set Fi | eName(argv[1]);

typedef itk::FFTShiftlmgeFilter< IType, |Type > FilterType;
FilterType:: Pointer filter = FilterType::New();
filter->Setlnput(reader->CetQutput());
filter->Setlnverse(atoi(argv[3]));

itk::SinpleFilterWatcher watcher(filter, "filter");

typedef itk::ImageFileWiter< |Type > WiterType;
WiterType::Pointer witer = WiterType:: New();
writer->Setlnput(filter->GetQutput());
writer->SetFileNane(argv[2]);

writer->Update();

i &

(a) inputimage (b) shifted image, with Inverse = false

1]

(c) the image shifted twice, with Inverse = false for (@ the imageshifted twice, with Inverse = false for
first run, and Inverse = true for the second both the first and the second run. The input image is
not restored.

Figure 2: Result of the transforms on an image with an odd (5ix8).

References 4

return 0;

}

References

[1] L. Ibanez and W. Schroeder. The ITK Software Guide. Kitware, Inc. ISBN 1-930934-10-6,
http://www.itk.org/ItkSoftwareGuide.pdf, 2003.

	Description
	Code sample

