
Parallel 3D Exact Signed Euclidean Distance
Transform

Release 1.01

Robert Staubs1, Andriy Fedorov, Leonidas Linardakis, Benjamin Dunton and
Nikos Chrisochoides

September 25, 2006

Department of Computer Science, The College of William and Mary
1rdstau-at-wm.edu

Abstract

The computation speed for distance transforms becomes important in a wide variety of image processing
applications. Current ITK library filters do not see any benefit from a multithreading environment. We
introduce a three-dimensional signed parallel implementation of the exact Euclidean distance transform
algorithm developed by Maurer et al.[1] with a theoretical complexity of O(n/p) for n voxels and p
threads. Through this parallelization and efficient use of data structures we obtain approximately 3
times mean speedup on standard tests on a 4-processor machine compared with the current ITK exact
Euclidean distance transform filter[5].

1 Introduction

The Euclidean distance transform (EDT) of an N-dimensional binary image I is an N-dimensional image
IEDT such that for all indices i, the element eEDT,i ∈ IEDT is the Euclidean distance from the element eI,i to
the nearest foreground element in I. If we assume the typical convention of negative distances for the interior
of a feature, we can further define the signed EDT (SEDT) as ISEDT such that ∀i,eSEDT,i ∈ ISEDT the|eSEDT,i|
is the Euclidean distance from eI,i to the nearest surface foreground element and eSEDT,i is negative if eI,i is
internal to a feature, positive if external, and zero if on an edge.

There are three existing ITK filters for computing distance transforms:

1. itk::SignedDanielssonDistanceMapImageFilter

2. itk::ApproximateSignedDistanceMapImageFilter

3. itk::SignedMaurerDistanceMapImageFilter

The first of these computes an approximation of the SEDT with less than 1 pixel error in two dimensions[2].
The second computes an approximation using the Chamfer distance[3]. The third computes the exact SEDT
and is an implementation of Maurer, et al.[1][5] All three can compute the SEDT to arbitrary dimensions
and can handle anisotropic image dimensions.

http://www.itk.org/Doxygen/html/classitk_1_1SignedDanielssonDistanceMapImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ApproximateSignedDistanceMapImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1SignedMaurerDistanceMapImageFilter.html

2

In this paper we present a new ITK filter, SignedMaurerParallelDistanceMapImageFilter, for computing
the signed exact Euclidean distance transform for 3D images in parallel. It is approximately 3 times faster
than itk::SignedMaurerDistanceMapImageFilter on 4 simultaneous multithreading (SMT) processors
with 2 threads each. We compare output and speeds of our parallel 3D implementation based on Maurer’s
algorithm with the Maurer and Danielsson filters and give implementation details on our filter.

2 Algorithm

In Maurer[1], the authors present a fast (linear time) algorithm for computing the exact distance transforms
using the Lp distance metrics and, more generally, the weighted Lp distance metrics

∆(x,y) =

(
k

∑
i=1

wi |xi− yi|p
) 1

p

,wi > 0, (1)

the difference between weighted (anisotropic) and non-weighted (isotropic) calculations being that between
1 and 6= 1 values of the wi term. We treat the specific application of this to the 3D Euclidean distance

∆(x,y) =

(
3

∑
i=1

wi |xi− yi|2
) 1

2

,wi > 0. (2)

The base algorithm for SignedMaurerParallelDistanceMapImageFilter relies on dimensional reduction.
First, the x dimension is considered and the closest feature voxel (CFV) is determined for every element
in the image. Using the CFV calculations for x, the same can be done for y, and then z in turn. Our paral-
lelization distributes contiguous groups of z planes to the threads. After all threads have finished their first
and second dimension CFV calculation, groups of contiguous x planes are assigned to the threads for the
final step. This a priory method maximizes cache hits and has a low run queue creation/access cost. Each
thread calculates its processing region independent of others and this region is protected from access by
other threads. Thus the region calculation cost is minimized and there are no synchronization costs directly
associated with region access management.

A combination of this method and a run queue would also maximize cache hits but would suffer from queue-
associated costs and, because of the highly symmetric nature of the image processing, would not generally
provide significant benefits in load-balancing. The batch regions of slices would need to be determined
statically and access to the shared queue would need to be controlled (i.e., by a mutex), both resulting in
performance losses. The number of operations is largely the same across an image, varying somewhat by the
number of features in a scan line (and thus, region). High load imbalances are therefore not especially likely
and thus the cost due to dynamic load-balancing can be eliminated. Experimental comparisons with a load-
balancing version of our filter also fail to show consistent benefits for any particular degree of load-balancing
tested.

This analysis will be expanded further elsewhere.[4]

3 Filter Use and Implementation

This filter was designed to adhere to the expectations of users of the Danielsson and
itk::SignedMaurerDistanceMapImageFilter filters and as such shares many of the same options. It
takes as input an image of any type and can output either a squared or an actual distance transform.

http://www.itk.org/Doxygen/html/classitk_1_1SignedMaurerDistanceMapImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1SignedMaurerDistanceMapImageFilter.html

3

Apart from slight differences in parameters the most noticeable divergence is that this is strictly a three-
dimensional implementation. Two-dimensional images are easily handled secondarily through extraction.
Our next implementation will be n-dimensional (n = 2,3,4, ...).

The parameters that differ between this filter and Danielsson or Maurer are as follows:

• SetForegroundValue allows the specification of the foreground element value (typically 1, which is
the default). All other values are assumed to be background values.

• SetBinaryConvert specifies whether the input image is already a binary image of values 1 and 0. This
situation corresponds to a value of false. The default value is true. This option is useful for skipping
a processing step if more information about the input is known.

• SetNumberOfThreads sets the requested number of threads for the filter. The actual number of threads
used may differ. It sets the requested number of threads for the filters used internally as well as to
the filter’s own processes. The default behavior is to request the maximum available threads on the
system.

Our filter uses the following filters internally on at least one option:

• itk::AddImageFilter (for signed transform only)

• itk::BinaryErodeImageFilter (for signed transform only)

• itk::BinaryThresholdImageFilter (for non-preprocessed binary images)

All three of these filters are of time O(n/p) when used in parallel in the current release of ITK. The distance
transform itself is O(n/p) as stated by Maurer[1]. Therefore, these pre-transform operations result only in a
higher constant factor in the run time and not an increase in order.

Our filter does not use the standard ITK threading provision of including a ThreadedGenerateData function.
We do this because this filter cannot be parallelized purely through per-pixel parallelization. It is essential
that individual scan lines be processed by the same thread. Further, the lower dimensions must be completed
before the highest is calculated. This functionality cannot be achieved with the provided functionality, so
we provide slightly altered versions of the relevant functions which guarantee the desired behavior.

4 Comparative Results

Our filter was compared with the itk::SignedMaurerDistanceMapImageFilter and Danielsson fil-
ters for accuracy and speed. The arithmetic difference between our filter and Maurer was found to be
equal to zero in all cases using analogous settings, as expected from their use of the same base algo-
rithm. The absolute difference between our filter and Danielsson was found to be less than 1, again
as expected, and equalled the difference between the nonparallel Maurer filter and Danielsson. The
speedup relative to Danielsson is in line with that demonstrated in Tustison, et al.[5]. A comparison with
itk::ApproximateSignedDistanceMapImageFilter was also performed and our tests show a marked
advantage in speed here as well.

Figures 1 and 2 display the various comparisons of runtimes for the three filters on a large number of
image sizes for a standard test image (a cube of volume 1

8 the total of the image). They clearly show the
benefits of our filter in a multiple-thread environment. The advantage over the current ITK single-threaded

http://www.itk.org/Doxygen/html/classitk_1_1AddImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1BinaryErodeImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1BinaryThresholdImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1SignedMaurerDistanceMapImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ApproximateSignedDistanceMapImageFilter.html

4

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 50 100 150 200 250 300

T
im

e
(s

ec
on

ds
)

Size per Dimension (voxels)

Single-Threaded Comparison of Maurer Implementations for Dimension Size

Parallel Maurer
Nonparallel Maurer

(a) For size of image in each dimension.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5e+006 1e+007 1.5e+007 2e+007 2.5e+007

T
im

e
(s

ec
on

ds
)

Size (voxels)

Single-Threaded Comparison of Maurer Implementations for Total Size

Parallel Maurer
Nonparallel Maurer

(b) For total size of image.

Figure 1: Comparison of run times of our parallel Maurer implementation running with a single thread and the existing
ITK Maurer implementation.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250 300

T
im

e
(s

ec
on

ds
)

Size per Dimension (voxels)

Multithreading Speed Speed Comparison for Dimension Size

1 Thread
2 Threads
3 Threads
4 Threads
5 Threads
6 Threads
7 Threads
8 Threads

(a) For size of image in each dimension.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5e+006 1e+007 1.5e+007 2e+007 2.5e+007

T
im

e
(s

ec
on

ds
)

Size (voxels)

Multithreading Speed Comparison for Total Size

1 Thread
2 Threads
3 Threads
4 Threads
5 Threads
6 Threads
7 Threads
8 Threads

(b) For total size of image.

Figure 2: Comparison of run times of our parallel Maurer distance map implementation for a varying number of
requested threads.

implementation when running in a single-threaded environment can also be seen. The lower coefficient (as
they are both still O(n)) is primarily due to the use of efficient memory-access and iterator use.

Table 1 shows the mean speedups for the filter. First is the unscaled speedup ratio of the processing time
using 1 thread to the time for p processors, T1/Tp, for the cube test data. Second is the mean projected scaled
speedup using the processing time for image of size n with 1 thread and the time for image of size np with
p threads, p×T1(n)/Tp(np). The scaled speedup thus represents a parallelization with constant region size
per thread for each n. The values used for the scaled speedup are for the projected times for the sample cube
data based on a linear regression of the data.

All tests were performed on a machine with 4 Intel Xeon 1.5 GHz processors with (2 SMT threads per
processor) and 2 GB of physical memory running SuSE Linux 9.2 and using gcc 3.3.4 and ITK 2.8.1 (using
revision 1.3 of itk::SignedMaurerDistanceMapImageFilter.

The shown test results are for the full number of multithreads on the tested system–8. However, a decrease
in benefit of increased threads is clearly visible after 4 threads. When the filter actively uses both SMT
threads on a processor these processors generate resource access costs that offset some of the parallelization
benefits.[4]

http://www.itk.org/Doxygen/html/classitk_1_1SignedMaurerDistanceMapImageFilter.html

5

Number of Threads 2 3 4 5 6 7 8
Mean Speedup 1.819 2.461 2.972 2.767 2.920 2.955 3.060
Mean Speedup 1.740 2.445 3.054 2.880 3.085 3.172 3.325

Table 1: Mean speedup T1/Tp for cube data and mean projected scaled speedup p×T1(n)/Tp(np) for cube data.

5 Conclusions

Our introduction of SignedMaurerParallelDistanceMapImageFilter, an ITK filter which calculates the signed
Euclidean distance in parallel, will be of assistance in various parallel image processing applications. Its
theoretical complexity of O(n/p) is a substantial improvement over filters which calculate the estimated
EDT or which calculate the exact EDT sequentially. The filter behaves similarly to the established filters
and should thus be easily adapted to existing applications. Our planned extension from 3D to arbitrary
dimensions will make this integration even easier.

References

[1] Calvin R. Maurer, Jr., Rensheng Qi, and Vijay Raghavan. A linear time algorithm for computing ex-
act euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Anal.
Mach. Intell., 25(2):265–270, 2003. http://dx.doi.org/10.1109/TPAMI.2003.1177156. (docu-
ment), 1, 2, 3

[2] P. E. Danielsson. Euclidean distance mapping. Computer Graphics and Image Processing, 14:227–248,
1980. 1

[3] Karl Krissian and Carl-Fredrik Westin. Fast and accurate redistancing for level set methods. In
Roberto Moreno Diaz and Alexis Quesada Arencibia, editors, Computer Aided Systems Theory (EU-
ROCAST’03), pages 48–51, Las Palmas de Gran Canaria, Spain, February 24–28 2003. Universidad de
Las Palmas de Gran Canaria. 1

[4] R. Staubs, A. Fedorov, L. Linardakis, and N. Chrisochoides. An ITK Filter for Parallel Computation
of Euclidean Distance Transforms. To be submitted to ACM Transactions on Mathematical Software,
2006. 2, 4

[5] N. J. Tustison, M. Siqueira, and J. Gee. N-D linear time exact signed euclidean distance transform. The
Insight Journal, January - June 2006. http://insight-journal.org/dspace/handle/1926/171.
(document), 1, 4

http://dx.doi.org/10.1109/TPAMI.2003.1177156
http://insight-journal.org/dspace/handle/1926/171

	Introduction
	Algorithm
	Filter Use and Implementation
	Comparative Results
	Conclusions

