-DO’: A “Deformable Organisms” framework
for ITK

Release 0.50
Chris MclIntosh and Ghassan Hamarneh

July 13, 2006

Medical Image Analysis Lab

School of Computing Science, Simon Fraser University
Burnaby, BC, Canada

{cmcintos,hamarneh} @cs.sfu.ca

Abstract

Medical image analysis is an important problem relating to the study of various diseases. Since their
inception to MICCALI in 2001, “deformable organisms” have emerged as a fruitful methodology with
examples ranging from 2D corpus callosum segmentation to 3D vasculature and spinal cord segmenta-
tion. Essentially we have developed an artificial life framework that complements classical deformable
models (snakes and deformable meshes) with high-level, anatomically-driven control mechanisms. This
paper describes the integration of deformable organisms into the Insight Toolkit (ITK) www.itk.org

Our code attempts to bridge the ITK framework and coding style with deformable organism design
methodologies. In the interest of open science, as the framework develops it will serve as a basis for the
community to develop new deformable organisms as well as experiment with those recently published

by our group.

Contents
1 Introduction 2
1.1 ITK Deformable Organisms: Motivation and Introduction 4
DOs Requirements e e e e e e e 4
2 Implementation 4
2.1 OrganiSmo e e e e e e 4
2.2 Control Center e e e e e e e e e 5
2.3 SENSOT o o e e e 6
2.4 Behavior e e e 6
2.5 PhySics e 7
2.6 Deformations e e e e e 7
2.7 GEOMELITIC o v o e e e e e e e e e e e e 7
3 Conclusions 8

4 Acknowledgements 8

A Requirements 8
B Examples 8
B.1 Layer Examples e 8
B.2 Deformable Organism Examples 9
B.3 DefOrgExamples e e 9

C The Visual Interface to I-DO 9
D Guide to users 9
HelloI-DO 0 o e 10

Building A Deformable Organism L 10
Extending Existing DOs 12

Creating New DOs and Layers ittt 12

1 Introduction

In medical image analysis strategies based on deformable models, controlling the deformations of the mod-
els is a desirable goal to produce proper segmentations. Incorporating expert knowledge to automatically
guide deformations cannot be easily and elegantly achieved using the classical deformable model low-
level energy-based fitting mechanisms. Deformable Organisms (DOs), are a decision-making framework
for medical image analysis that complements bottom-up, data-driven deformable models with top-down,
knowledge-driven mode-fitting strategies in a layered fashion inspired by artificial life modeling concepts.
Intuitive and controlled deformations are carried out through behaviors. Sensory input from image data and
contextual knowledge about the analysis problem govern these different behaviors.

Since their conception in 2001 [2], various DOs-based approaches for medical image analysis have been
developed (Figure 1). In this original work, a variety of DOs where demonstrated with applications to lo-
cating the lateral ventricles, caudate nuclei, and putamina structures in transversal brain magnetic resonance
image (MRI) slices, as well as DOs for the segmentation of vessels in 2D angiography. In [3], Hamarneh
and MclIntosh augmented DOs to include physically-based and controlled deformations demonstrating an
application to corpus callosum segmentation in mid-sagittal magnetic resonance images (MRI). Recently,
Mclntosh and Hamarneh [6] introduced DOs 3D DOs for vascular segmentation and analysis, which take
advantage of their sensors and deformation layer to perform locally optimal vascular-specific filtering. An
extension of that work, [5], introduces DOs for spinal cord segmentation and analysis and demonstrates
extended filters for structures varying from elliptical to tubular. In each case DOs have demonstrated their
key advantages over other leading techniques. Namely, their ability to produce increased accuracy, allow
intuitive user-interaction to control or repair the segmentation where other methods would require being
restarted with some type of parameter adjustment, facilitate greater analysis and labeling abilities than those
methods producing binary outputs, the ready ability to incorporate image or shape-based prior-knowledge,
and a modular framework allowing for incorporating new sensors (image filters), decision models, shape
representations, and deformation mechanisms.

Though a summary is provided here, complete research-oriented look at DOs can be found in [4]. DOs are
built following a multilevel AL modelling approach consisting of four primary layers: cognitive, behavioral,
physical, and geometrical. Specifically, the cognitive layer makes decisions based on the DOs current state,

Figure 1: An assortment of deformable organisms showing(left to right, top to bottom): Physically-based corpus cal-
losum, Geometrically-based corpus callosum, Putamina and ventricle organisms, 2D Angiography, 3D ‘spinal crawler’,
and 3D ‘vessel crawler’

anatomical knowledge, and its surrounding environment (the image). Decisions could be made to sense
information, to deform based on sensory data, to illicit help from the user, or to terminate the segmentation
process. All of these actions are described under the behavioral layer of the organism, and they rely upon
both the physical and geometrical layers for implementation. For example, in the context of our ‘vessel
crawlers’ [6], the act of moving towards a sensed target location is described by the ‘growing’ behavioral
method. The cognitive center gathers sensory input using the ‘sense-to-grow’ sensory module, decides the
correct location via the ‘where-to-grow’ decision module, elicits the act of ‘growing’ , and then conforms
to the vascular walls by ‘firting’. In turn, each of these methods relies upon the physical and geometrical
layers to carry out tasks, such as maintaining model stability. Consequently, we have a framework with
many independent layers of abstraction, each built upon the implementation of independent modules and or
processes.

We begin with a motivation of our framework in section 1.1, and a discussion of the general requirements of
DOs that the framework is set out to meet in 1.1. Sections (2.1-2.7) provide an overview of how each layer
is designed and implemented in the framework. We summarize in section 3. The appendices provide the
most information on using the framework with a requirements listing (section A), examples of layers and
organisms (section B), a guide to building and running your first organism (section D), and information on
extending organisms and the framework (section D).

1.1 ITK Deformable Organisms: Motivation and Introduction 4

1.1 ITK Deformable Organisms: Motivation and Introduction

Previously, the major drawback of DOs has been their restriction to a closed-source MATLAB framework.
Though straightforward and intuitive in design they are not readily extendable by the general medical im-
age analysis community in this form. ITK, however, enjoys a large user base and exemplifies the notion
of an open-source, adoptable, and extendable framework. Furthermore, the incorporation of ITK grants
DOs access to faster processing, multi-threading, additional image processing functions and libraries, and
straightforward compatibility with the powerful visualization capabilities of the Visualization Toolkit (VTK)
www.vtk.org

DOs Requirements

DOs are constructed through the realization of many abstract and independent concepts/layers (cognitive,
behavioral, physical, geometrical, sensors). As such, a DO framework must reflect this modular design by
allowing users to replace one implementation (layer) for another. For example, new shape representations
should be introducible without re-designing existing cognitive layers. To this end, the interface between
layers must be consistent across implementations (plug and play), and clearly defined.

The framework must also be extendable, allowing it to grow and advance as the concept of DOs does. That
is to say, it should support current research into new types of DOs designed for different applications, with
increasingly advanced decision making abilities and deforming abilities.

2 Implementation

This section provides details on the implementation of the I-DO framework. Each section (2.1-2.7) describes
a DO layer in detail within the context of our I-DO framework.

2.1 Organism

The organism 1is the abstract base class (ABC) that acts as a container for most of the framework. Each
organism posses its world, a control center, a physics layer, and a geometrical layer. It provides public inter-
faces through which users can add deformations and behaviors, as well as attach the cognitive, physical, and
geometrical layers. Its important to understand that as an ABC, the organism class itself is not instantiated.
It is designed as such so that no matter the derivation (type of organism), a DO application can simply call
its associated public interface. Consequently, of most interest are the derived classes themselves.

The itkOrganism derived class can be instantiated and used as a fully functional organism, or can be used
as a base class of another more specialized organism. It inherits from both the Organism ABC, and ITK’s
ImageTolmageFilter class. Though many other classes could be used, the ImageTolmageFilter class allows
these particular DOs to be incorporated as autonomous tools in existing ITK filtering pipelines (taking as
input an image and producing as output a segmented image). More details on this derived class are provided
at http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial_1_1_organism.html

2.2 Control Center 5

) // Organism\ \

Control Center Physics

—> Decisions l Geometric l

User < > w Dr

Sensors]—»[Behaviors]l Deformations

a8

a

K\ /;_/J

\
[Environment

Figure 2: The basic outline of our deformable organism framework. Dark arrows represent directions
of communication between objects, while hollow arrows represent one class running another’s public run
method, and encapsulation represents one class containing another. For example, the behavior class controls
the deformations class through the physics class.

2.2 Control Center

The control center is designed to handle all “intelligent” aspects of the organism. It has associated behaviors
and sensory modules, and provides the organism with its ability to make decisions (e.g. next behavior to
run, image data to sense, etc.). It monitors the status of the behaviors, deformations, and sensors, then makes
decisions based upon their states and outputs.

Consequently, this class exploits much of the complex versatility of the framework obtained through the
use of ABCs, streams, and structures. Through a single list of sensors and behaviors, the cognitive center
can perform a variety of actions on any defined geometrical or physical type regardless of the varying
input requirements they may have. For example, the decision to “translate” will trigger a spatial translation
behavior, which will in turn trigger the appropriate translate deformation as it pertains to the particular
physical layer of the model. All without the cognitive layer having any regard for which derived physical
layer and deformation class, or geometrical layer and shape representation is being called.

The control center accomplishes this by using a “run-by-name” design methodology, where once it decides
upon (or is asked to run) a particular named behavior it will search its list of known behaviors for one with
the matching name.

By calling a control center’s Update method the organism will conceptually cause the control center to
do its thinking. If no current behavior exists it will decide on one (via the derived classes provided
DecideNextBehavior method). Otherwise, it will check the status of the behavior (via its IsFinished
method) cleaning up after it, and deciding on a new behavior if it has finished, and updating it (Update
method) if it has not.

http://www.sfu.ca/ ~camcintos/IDO/doxygen/html/classmial_1_1_control_center.html

2.3 Sensor 6

2.3 Sensor

Organisms perceive their surroundings through sensory modules. They provide a means by which to gather
statistics and characteristics of its own geometry and the world (image data) in which it resides. At any
given time a decision function may possess many different sensory objects, each of which can report back
different sensory information (e.g. gray level intensity, gradient magnitude and direction, texture features,
etc). It is important to note that some sensors will be implementation dependent, while others will not. For
example, it makes no sense to run a vascular bifurcation sensory module on a corpus callosum organism
because the latter is only 2D and has a completely different topology and appearance characteristics.

In order to run a sensor one must use its publicly defined sensorIn and sensorOut types to create the
input arguments and receive the output. This allows maximum flexibility in the parameters a sensor can
have, while still enabling any sensor to be ran abstractly. Through this flexibility users can setup and run
complex pipelines of ITK filters within the sensors, while passing their variety of input requirements in via
the sensorln type.

http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial_1_1_sensor.html

2.4 Behavior

Behaviors are basically actions, or sequences of actions. As such, each behavior has a name, a state, a pointer
to the physical layer, and multiple sub-behaviors, and deformations. To ensure meaningful interaction with
other organisms and users each behavior has a name. So for example, despite the action “running” being
carried out differently by different animals each can always be told to run, or report that it is running. Upon
being executed the behavior simply begins executing its main body. Again, the behavior class is simply an
ABC. So let’s consider a few example derived classes to illustrate the subtleties of this class.

Our first simple example behavior is ‘inflate for 30 cycles’. The act of the organism inflating itself is physics
system dependant, so the behavior runs its associated inflate deformation by calling the runDeformation
method of the physics object. The behavior then sets its status to incomplete. At the next run of its
decideNextBehavor = method the control center checks the status of the inflate behavior, and upon see-
ing incomplete runs the behavior’s update method. Now upon executing, the behavior checks to see if its
ran for 30 cycles by examining the physics objects time counter, if so it sets its status to complete. Now
suppose a more complex behavior inflates, then moves forward. First it runs its inflate sub-behavior by
checking its list of behaviors for one with a matching name, then checks its status. Upon confirming that its
first sub-behavior is complete it moves forward, and sets its own status to complete.

It is also possible for the decideNextBehavior =~ method to use a decision function to decide that a given
behavior is finished executing, regardless of its current status. Of course, a behavior may also fail, resulting
in some action by the control center.

Sub-behaviors are smaller behaviors performed as part of a larger action. This enables significant levels of
abstraction, allowing users to issue single commands and carry out vast and complex sequences of actions,
or small exact ones. For example, one could instruct the organism to simply inflate, or one could tell it to
segment which includes inflation.

http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial_1_1_behavior.html

2.5 Physics 7

2.5 Physics

The physics layer is responsible for simulating the deformations and handling the organisms interaction with
its environment through external forces. Each physics object possesses a list of executable deformations and
a geometric object. The main public interface of interest is the simulate method, which actually causes
forces to be calculated and exerted. Again, as the physics layer is merely an ABC, it is of much more
interest to discuss this class through an example of one of its derived classes.

An example derived class is the Euler physics object. This implementation relies on the simulation of a
spring-mass system to perform deformations. When the organism calls the simulation method, the Euler
object runs its simulation cycle for a set number of times, and then increments the global timer. During the
simulation cycle the organism has control of the CPU, and can not be interrupted. Consequently, the length
of this cycle should be kept short in order to allow the organism to check behavior status states, run decision
functions, and check its message board. If the length of the cycle is longer than the time required to run a
single behavior, then the organism will basically be idle for the remaining iterations. However, the running
deformation also has a runtime set by its calling behavior. So the physics object can stop simulating after
that runtime has expired.

http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial_1_1_physics.html

2.6 Deformations

Deformations manipulate the geometry of the organism. For example, in a physically-based spring-mass
implementation deformations move nodes, actuate springs, apply forces, and basically deform the geomet-
rical model. Much like behaviors, each deformation has an associated status and runtime, as well as run
method for its public interface. However, in this case deformations do not posses many sub-deformations.

As an example let us consider the inflate deformation. Upon being executed by an associated behavior it
begins applying forces normal to the model’s surface, causing it to inflate. In the case of a spring-mass
system these forces may be carried out by applying forces on individual nodes, or by increasing the rest-
lengths of springs. The concept of reversing the inflation to a deflation once the organism has passed from a
dark to bright (for example when segmenting dark object on a white background) is delegated to the control
center of the organism, and does not take place here. Instead only low-level tasks like actuating springs,
moving nodes, etc are carried out. This enables the execution of both prior and learned deformations [7],
where learned deformations are carried out by the associated learned behavior causing a sequence of spring
actuations. However, if the underlying shape representation is level sets based the inflation takes the form
of adding a constant to the embedding function in order to expand the zero-level set.

2.7 Geometric

The Geometric object houses the the actual topology of the organism. It handles adding and removing
nodes, as well as reading and writing the meshes to file. Consider two different example derived classes: the
VectorGeometry class, and the TubularGeometry class. The VectorGeometry class is implemented entirely
with vector geometry, while the TubularGeometry class is also derived from an ITK spatialobjects class.
Both classes provide the same public interface in terms of getting nodes, setting nodes, writing to file,
reading from file, etc. However, they each allow the user to take advantage of their inherit properties. So the
user can write a custom sensory class, that uses the additional functionality of the TubularGeometry class
without having to modify any internal code of the organism itself. In essence, the user can be dependent on

the implementation when they want to be, and remain totaly independent in other situations by sticking to
the Geometric base class interface.

3 Conclusions

We have developed a powerful new framework for medical image segmentation and analysis that offers
both great flexibility and rigid design enforcement, thereby, ensuring maximum reusability, portability and
sustainability. Our framework makes use of many powerful features in ITK including filters, meshes, file
10, and spatial objects. We have also created a robust physically-based deformations layer, which itself is
a strong contribution to ITK as the current implementation is reported to have numerous problems. With
the geometrical layers binarylmageToMesh functionality, one can easily create deformable models and de-
form them using our spring-mass deformation system or our level-set implementation. Furthermore, the
added ability to convert BYU surfaces into meshSpatialObjects and consequently, into deformable organ-
isms should prove a useful tool allowing level-set refinement, or physics-based interaction with segmentation
results of various existing projects.

4 Acknowledgements

We would like to thank Andy Rova for his development of the Phys_LevelSet class, Vincent Chu for his
role as lead developer of the KWWidgets viewer application, and Aaron Ward for his technical expertise
and discussions on fundamental framework design choices.

A Requirements

Though the framework itself only requires ITK 2.4 or greater, building the provided viewer has additional
requirements:

e VTK 5.0.0 http://vwww.vtk.org
e SOViewer (Feb 8, 2006) http://www.vtk.org/Wiki/SOViewer

o KWWidgets (Feb 8, 2006) http://www.kwwidgets.org/Wiki/KiWWidgets

B Examples

B.1 Layer Examples

Various examples of the layers/modules explained in section 2 are available, with details provided in the
frameworks online documentation.

e Geom_MeshSpatialObject<dType,nDims, MType, VIype>
http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial_1_1_geom _mesh_spatial_cbiject.html

B.2 Deformable Organism Examples 9

e Phys_Euler<Type,nDims,MType,VType>
http://www.sfu.ca/ ~amcintos/IDO/doxygen/html/classmial 1 1 phys euler.html

e Beh_TranslateAll<Type,nDims>
http://www.sfu.ca/ ~amcintos/IDO/doxygen/html/classmial_1_1 beh translate_all.html

e Ctrl_ScheduleDriven<class Type, int nDims>
http://www.sfu.ca/ ~amcintos/IDO/doxygen/html/classmial_1_1_ctrl schedule_driven.html

e Sense_Gradient<DataType,TInputlmage, TGradientImage, nDims>
http://www.sfu.ca/ ~camcintos/IDO/doxygen/html/classmial_1_1_sense_ gradient.html

B.2 Deformable Organism Examples
B.3 DefOrgExamples

There are numerous example DOs included with the framework.

¢ itkOrganism<ImageType, ImageType, GradientImageType, dType, nDims> A derived organism
based on a itk::ImageToImageFilter that contains no default layers.

e Org_LevelSetSchedule<ImageType, ImageType, GradientImageType, dType, nDims> A
geodesic active contours [1] based DO that uses a schedule driven cognitive layer.

e Org_EulerSchedule<ImageType, ImageType, GradientlmageType, dType, nDims> A 3D
spring-mass [6] based DO that uses a schedule driven cognitive layer.

C The Visual Interface to I-DO

We have also developed a graphical user interface to the I-DO framework, that allows its users to visualize
the geometry of created DOs as well as observe their deformations in real time. It gives the user the ability to
load DOs as dll files, while allowing the developer to define customized interfaces via the DefOrgAdapter
class. The GUI is based on, and therefore requires, KWWidegets, VTK, and SOViewer. Future versions
will facilitate interaction with DOs through mouse click driven forces, and possibly other forms of input.
Complete documentation of the viewer will be made available at a later date, but many details reside in its
doxygen.

http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial 1 1_def org_viewer_adapter_base.html

D Guide to users

This section provides information to those who wish to use, or contribute to the framework.

10

Hello I-DO

In this section we present a simple “Hello [I-DO] World” example that provides a step by step guide to how
a new user can build and run a simple DO.

1. Download and compile ITK 2.4 or greater (see www.itk.org).

2. Download and compile the I-DO source code using CMake (www.cmake.org) and the CMakeLists.txt
file found in the root-most directory. Set the itk_utilities_path to the utilities folder found in your ITK
source directory.

3. Open defOrgs/examples/basic/CMakeLists.txt using Cmake and configure. Setting the
IDO_BUILD_PATH to wherever you built I-DO in step 2, and the IDO_PATH to YourLoca-
tion/defOrgs/source.

4. Compile the created project.

5. Run from command line, providing input and output image names, a schedule name, and a mesh
name. (e.g. test. mhd out.mhd eulerSchedule3D.txt cubeMesh3D.meta)

6. The DO will run, and output a final binary image using the file name provided.

Users can follow these procedures for any of the provided examples in the examples directory.

Building A Deformable Organism

This example walks the reader through creating a DO by individualy instantiating and attaching the layers.
This is contrast to using an already created DO, which can be instantiated , setup, and used just like any ITK
filter.

The first step is to chose instantiate a DO shell (one having no built in layers) using the standard ITK
itk::SmartPointer approach. In this case the DO is an ITK itk::ImageToImageFilter , and must be
provided with an input image via the SetInput method.

typedef itk::ItkOrganism <ImageType, Imagelype, GradientImageType, float, 3> organismType;
organismIype::Pointer testOrg = organismType::New();

std::cout << "Organism created..." << std::endl;

testOrg—>SetInput (reader—>GetOutput ()) ;

Next we will instantiate a sensor to calculate the gradient information used as an external force during the
deformation simulations by the Physics layer.

typedef Sense Gradient<float, ImageType, GradientImageType, 3> gradientSensorType;
gradientSensorType: :Pointer gradientSensor = gradientSensorType::New();

The sensor requires its publicly defined sensorIn as input. Here we create a pointer to the class, and set its
values. This allows all sensors to be ran from a common run method, with their own customized input.

gradientSensorType: :sensorIn: :Pointer input = gradientSensorType::sensorIn::New();
input->sigma = 1.0;

reader—>Update() ;

input->imageIn = reader—->GetOutput ();

11

The gradient sensor can then be ran.

gradientSensor->run (input) ;

Finally, its output can be obtained by constructing an sensorOut ~ itk::SmartPointer and providing the
appropriate downcast on the pointer returned by the getOutput method.

gradientSensorType: :sensorQOut::Pointer output = (gradientSensorType::sensorOut *) (gradientSensor—>getOutput ()) .Get

Next create the Physics and Geometrical layers. Notice that the type of external force image is provided
as an input type to the Physics layer.

//Instantiate geomtery and physics layers
typedef Phys_FEuler<float,GradientImageType, 3> PhysLayerType;
typedef Geom MeshSpatialObject<float,3> GeometricType;

PhysLayerType: :Pointer physLayer = PhysLayerType::New();
GeometricType: :Pointer geomlayer = Gecmetriclype::New();

Then set the Physics layer to use the external force image calculated by the gradient sensor and the
newly constructed Geometrical layer, and setup the topology of the Geometric layer (in this case an
ITK itk::MeshSpatialObject). Finally, attach both to the Organism .

physLayer—>setExternalForces ((void *) & (output—>imageOut));
physLayer—>setGeometry (geomlLayer) ;
std::cout << "External forces set." << std::endl;

geomLayer—>readTopologyFromFile (topologyInputFileName) ;
std::cout << "Topology read from ’'" << topologyInputFileName << "/..." << std::endl;

testOrg->setPhysicslayer (physlayer) ;
testOrg—>setGeometriclayer (geomlayer) ;
std::cout << "Physics and Geometric layers added..." << std::endl;

Create a Cogntive layer, set its appropriate options, and attach it to the DO. In this case it only requires a
Schedule text file (e.g. eulerSchedule3D.txt).

Ctrl_ScheduleDriven<float, 3>::Pointer cgl = Ctrl_ScheduleDriven<float, 3>::New();
cgL—>setSchedule (scheduleFileName) ;
testOrg->setCognitivelayer (cgl) ;

Now begin creating and attaching behaviors, and deformations. Note in this case, the behaviors and defor-
mations do not require any additional parameters or settings.

Beh_TranslateAll<float, 3>::Pointer behl = Beh_TranslateAll<float,3>::New();
Beh_UniformScale<float, 3>::Pointer beh2 = Beh_UniformScale<float,3>::New();
Def_Translation<float, 3>::Pointer defl = Def Translation<float,3>::New();

Def_UniformScale<float, 3>::Pointer def2 = Def UniformScale<float,3>::New();

12

testOrg->addBehaviour (behl) ;
testOrg—>addBehaviour (beh2) ;
testOrg—>addDeformation (defl);
testOrg—>addDeformation (def2);

The Organism is ready to run. Calling Update () on the writer will cause a single run of the DO, which will
simulate for one unit of DO time. Here we simulate for 25 units of DO time before updating the writer.

writer—>SetInput (testOrg->GetOutput ()) ;
try
{
std::cout << "Running organism..." << std::endl;
for(int i=0; 1i<25;i++)
{
testOrg—>run();
std::cout << "one run" << std::endl;
}
writer—>Update();
}
catch (itk: :ExceptionObject & err)

{
std::cout << "ExceptionObiject caught!" << std::endl;
std::cout << err << std::endl;
return -1;

Finally, in addition to the binary output available on the writer the DO’s mesh can be written back to file.

testOrg—>writeNodesToFile (nodeOutputFileName) ;
std::cout << "Nodes written to ’" << nodeQutputFileName << "' ." << std::endl;

Extending Existing DOs

Extending existing organisms is as easy as following the Building A Deformable Organism example and
attaching additional layers.

Creating New DOs and Layers

Detailed information about creating new DOs and layers will be included in this document in a later revision.
In the mean time, interested users are referred to the doxygen documentation which outlines how each pure
virtual function of the ABCs should be defined in a derived class. We will also provide skeleton code
generators, that will give those wishing to create new layers a “fill in the blanks” option.

http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/index.html

References 13

References

[1]

(2]

Vincent Caselles, Ron Kimmel, and Guillermo Sapiro. Geodesic active contours. In ICCV, pages
694-699, 1995. B.3

Ghassan Hamarneh, Tim Mclnerney, and Demetri Terzopoulos. Deformable organisms for automatic
medical image analysis. In MICCAI, pages 6676, 2001. 1

Ghassan Hamarneh and Chris Mclntosh. Physics-based deformable organisms for medical image anal-
ysis. SPIE Medical Imaging, 5747:326-335, 2005. 1

G. Hamarnerh and C. Mclntosh. Parametric and Geometric Deformable Models: An application in
Biomaterials and Medical Imagery, chapter 12: Deformable Organisms for Medical Image Analysis.
Springer Publishers, 1 edition, 2006. 1

C. Mclntosh and G. Hamarnerh. Spinal crawlers: Deformable organisms for spinal cord segmentation
and analysis. MICCAI, 2006. 1

C. Mclntosh and G. Hamarnerh. Vessel crawlers: 3d physically-based deformable organisms for vasu-
lature segmentation and analysis. IEEE Conference on Computer Vision and Pattern Recognition, 2006.
1,1,B.3

D. Terzopoulos, X. Tu, and R. Grzeszczuk. Artificial fishes: Autonomous locomotion, perception,
behavior, and learning in a simulated physical world. Artificial Life, 1(4):327-351, 1994. 2.6

-DO’: A “Deformable Organisms” framework
for ITK

Release 0.50
Chris MclIntosh and Ghassan Hamarneh

July 13, 2006

Medical Image Analysis Lab

School of Computing Science, Simon Fraser University
Burnaby, BC, Canada

{cmcintos,hamarneh} @cs.sfu.ca

Abstract

Medical image analysis is an important problem relating to the study of various diseases. Since their
inception to MICCALI in 2001, deformable organisms” have emerged as a fruitful methodology with
examples ranging from 2D corpus callosum segmentation to 3D vasculature and spinal cord segmenta-
tion. Essentially we have developed an artificial life framework that complements classical deformable
models (snakes and deformable meshes) with high-level, anatomically-driven control mechanisms. This
paper describes the integration of deformable organisms into the Insight Toolkit (ITK) www.itk.org

Our code attempts to bridge the ITK framework and coding style with deformable organism design
methodologies. In the interest of open science, as the framework develops it will serve as a basis for the
community to develop new deformable organisms as well as experiment with those recently published

by our group.

Contents
1 Introduction 2
1.1 ITK Deformable Organisms: Motivation and Introduction'. 4
DOs Requirements L e e e e e e e 4
2 Implementation 4
2.1 OrganiSm| e e e e e e e e e e e e 4
2.2 Control Center e e e 5
2.3 SENSOT . v v v v e e e e e e e e e e e e e e e 6
2.4 Behavior e e e 6
2.5 Physics . .. L e e 7
2.6 Deformations! e e e e e e 7
2.7 GEOMELIIC . . v v v v o e et e e e e e e e e e e e e e 7
3 Conclusions 8

4 Acknowledgements 8

www.itk.org�

A Requirements 8
B Examples 8
B.1 Layer Examples| e e e e e 8
B.2 Deformable Organism Examples| 9
C__The Visual Interface to I-DO 9
D Guide to users 10
Hello I-DO 0 o 10

Building A Deformable Organism| 10
Extending Existing DOs| e 12

Creating New DOs and Layers ittt 13

1 Introduction

In medical image analysis strategies based on deformable models, controlling the deformations of the mod-
els is a desirable goal to produce proper segmentations. Incorporating expert knowledge to automatically
guide deformations cannot be easily and elegantly achieved using the classical deformable model low-
level energy-based fitting mechanisms. Deformable Organisms (DOs), are a decision-making framework
for medical image analysis that complements bottom-up, data-driven deformable models with top-down,
knowledge-driven mode-fitting strategies in a layered fashion inspired by artificial life modeling concepts.
Intuitive and controlled deformations are carried out through behaviors. Sensory input from image data and
contextual knowledge about the analysis problem govern these different behaviors.

Since their conception in 2001 [?], various DOs-based approaches for medical image analysis have been
developed (Figure ??). In this original work, a variety of DOs where demonstrated with applications to lo-
cating the lateral ventricles, caudate nuclei, and putamina structures in transversal brain magnetic resonance
image (MRI) slices, as well as DOs for the segmentation of vessels in 2D angiography. In [?], Hamarneh
and MclIntosh augmented DOs to include physically-based and controlled deformations demonstrating an
application to corpus callosum segmentation in mid-sagittal magnetic resonance images (MRI). Recently,
Mclntosh and Hamarneh [?] introduced DOs 3D DOs for vascular segmentation and analysis, which take
advantage of their sensors and deformation layer to perform locally optimal vascular-specific filtering. An
extension of that work, [?], introduces DOs for spinal cord segmentation and analysis and demonstrates
extended filters for structures varying from elliptical to tubular. In each case DOs have demonstrated their
key advantages over other leading techniques. Namely, their ability to produce increased accuracy, allow
intuitive user-interaction to control or repair the segmentation where other methods would require being
restarted with some type of parameter adjustment, facilitate greater analysis and labeling abilities than those
methods producing binary outputs, the ready ability to incorporate image or shape-based prior-knowledge,
and a modular framework allowing for incorporating new sensors (image filters), decision models, shape
representations, and deformation mechanisms.

Though a summary is provided here, complete research-oriented look at DOs can be found in [?]. DOs are
built following a multilevel AL modelling approach consisting of four primary layers: cognitive, behavioral,
physical, and geometrical. Specifically, the cognitive layer makes decisions based on the DOs current state,
anatomical knowledge, and its surrounding environment (the image). Decisions could be made to sense

Figure 1: An assortment of deformable organisms showing(left to right, top to bottom): Physically-based corpus cal-
losum, Geometrically-based corpus callosum, Putamina and ventricle organisms, 2D Angiography, 3D ‘spinal crawler’,
and 3D ‘vessel crawler’. Related images and videos can be found at http://mial.fas.sfu.ca/researchProject.
php?s=157

information, to deform based on sensory data, to illicit help from the user, or to terminate the segmentation
process. All of these actions are described under the behavioral layer of the organism, and they rely upon
both the physical and geometrical layers for implementation. For example, in the context of our ‘vessel
crawlers’ [?], the act of moving towards a sensed target location is described by the ‘growing’ behavioral
method. The cognitive center gathers sensory input using the ‘sense-to-grow’ sensory module, decides the
correct location via the ‘where-to-grow’ decision module, elicits the act of ‘growing’ , and then conforms
to the vascular walls by fitting’. In turn, each of these methods relies upon the physical and geometrical
layers to carry out tasks, such as maintaining model stability. Consequently, we have a framework with
many independent layers of abstraction, each built upon the implementation of independent modules and or
processes.

We begin with a motivation of our framework in section ??, and a discussion of the general requirements of
DOs that the framework is set out to meet in ??. Sections (??-??) provide an overview of how each layer
is designed and implemented in the framework. We summarize in section ??. The appendices provide the
most information on using the framework with a requirements listing (section ??), examples of layers and
organisms (section ??), a guide to building and running your first organism (section ??), and information on
extending organisms and the framework (section ??).

http://mial.fas.sfu.ca/researchProject.php?s=157�
http://mial.fas.sfu.ca/researchProject.php?s=157�

1.1 ITK Deformable Organisms: Motivation and Introduction 4

1.1 ITK Deformable Organisms: Motivation and Introduction

Previously, the major drawback of DOs has been their restriction to a closed-source MATLAB framework.
Though straightforward and intuitive in design they are not readily extendable by the general medical im-
age analysis community in this form. ITK, however, enjoys a large user base and exemplifies the notion
of an open-source, adoptable, and extendable framework. Furthermore, the incorporation of ITK grants
DOs access to faster processing, multi-threading, additional image processing functions and libraries, and
straightforward compatibility with the powerful visualization capabilities of the Visualization Toolkit (VTK)
www . vtk . Oorg

DOs Requirements

DOs are constructed through the realization of many abstract and independent concepts/layers (cognitive,
behavioral, physical, geometrical, sensors). As such, a DO framework must reflect this modular design by
allowing users to replace one implementation (layer) for another. For example, new shape representations
should be introducible without re-designing existing cognitive layers. To this end, the interface between
layers must be consistent across implementations (plug and play), and clearly defined.

The framework must also be extendable, allowing it to grow and advance as the concept of DOs does. That
is to say, it should support current research into new types of DOs designed for different applications, with
increasingly advanced decision making abilities and deforming abilities.

2 Implementation

This section provides details on the implementation of the [-DO framework. Each section (??-??) describes
a DO layer in detail within the context of our I-DO framework.

2.1 Organism

The organism 1is the abstract base class (ABC) that acts as a container for most of the framework. Each
organism posses its world, a control center, a physics layer, and a geometrical layer. It provides public inter-
faces through which users can add deformations and behaviors, as well as attach the cognitive, physical, and
geometrical layers. Its important to understand that as an ABC, the organism class itself is not instantiated.
It is designed as such so that no matter the derivation (type of organism), a DO application can simply call
its associated public interface. Consequently, of most interest are the derived classes themselves.

The itkOrganism derived class can be instantiated and used as a fully functional organism, or can be used
as a base class of another more specialized organism. It inherits from both the Organism ABC, and ITK’s
ImageTolmageFilter class. Though many other classes could be used, the ImageToImageFilter class allows
these particular DOs to be incorporated as autonomous tools in existing ITK filtering pipelines (taking as
input an image and producing as output a segmented image). More details on this derived class are provided
at http://www.sfu.ca/ ~amcintos/IDO/doxygen/html/classmial 1_1_organism.html

www.vtk.org�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_organism.html�

2.2 Control Center 5

) // Organis& \

Control Center Physics

m— Decisions I Geometric I

User < > W D’

Sensors]—b[Behaviors]l Deformations

a8

a

K\ /;_/J

N
[Environment

Figure 2: The basic outline of our deformable organism framework. Dark arrows represent directions
of communication between objects, while hollow arrows represent one class running another’s public run
method, and encapsulation represents one class containing another. For example, the behavior class controls
the deformations class through the physics class.

2.2 Control Center

The control center is designed to handle all “intelligent” aspects of the organism. It has associated behaviors
and sensory modules, and provides the organism with its ability to make decisions (e.g. next behavior to
run, image data to sense, etc.). It monitors the status of the behaviors, deformations, and sensors, then makes
decisions based upon their states and outputs.

Consequently, this class exploits much of the complex versatility of the framework obtained through the
use of ABCs, streams, and structures. Through a single list of sensors and behaviors, the cognitive center
can perform a variety of actions on any defined geometrical or physical type regardless of the varying
input requirements they may have. For example, the decision to “translate” will trigger a spatial translation
behavior, which will in turn trigger the appropriate translate deformation as it pertains to the particular
physical layer of the model. All without the cognitive layer having any regard for which derived physical
layer and deformation class, or geometrical layer and shape representation is being called.

The control center accomplishes this by using a “run-by-name” design methodology, where once it decides
upon (or is asked to run) a particular named behavior it will search its list of known behaviors for one with
the matching name.

By calling a control center’s Update method the organism will conceptually cause the control center to
do its thinking. If no current behavior exists it will decide on one (via the derived classes provided
DecideNextBehavior method). Otherwise, it will check the status of the behavior (via its IsFinished
method) cleaning up after it, and deciding on a new behavior if it has finished, and updating it (Update
method) if it has not.

http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial 1 1_control_center.html

http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_control_center.html�

2.3 Sensor 6

2.3 Sensor

Organisms perceive their surroundings through sensory modules. They provide a means by which to gather
statistics and characteristics of its own geometry and the world (image data) in which it resides. At any
given time a decision function may possess many different sensory objects, each of which can report back
different sensory information (e.g. gray level intensity, gradient magnitude and direction, texture features,
etc). It is important to note that some sensors will be implementation dependent, while others will not. For
example, it makes no sense to run a vascular bifurcation sensory module on a corpus callosum organism
because the latter is only 2D and has a completely different topology and appearance characteristics.

In order to run a sensor one must use its publicly defined sensorIn and sensorOut types to create the
input arguments and receive the output. This allows maximum flexibility in the parameters a sensor can
have, while still enabling any sensor to be ran abstractly. Through this flexibility users can setup and run
complex pipelines of ITK filters within the sensors, while passing their variety of input requirements in via
the sensorln type.

http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial_1_1_sensor.html

2.4 Behavior

Behaviors are basically actions, or sequences of actions. As such, each behavior has a name, a state, a pointer
to the physical layer, and multiple sub-behaviors, and deformations. To ensure meaningful interaction with
other organisms and users each behavior has a name. So for example, despite the action “running” being
carried out differently by different animals each can always be told to run, or report that it is running. Upon
being executed the behavior simply begins executing its main body. Again, the behavior class is simply an
ABC. So let’s consider a few example derived classes to illustrate the subtleties of this class.

Our first simple example behavior is ‘inflate for 30 cycles’. The act of the organism inflating itself is physics
system dependant, so the behavior runs its associated inflate deformation by calling the runDeformation
method of the physics object. The behavior then sets its status to incomplete. At the next run of its
decideNextBehavor method the control center checks the status of the inflate behavior, and upon see-
ing incomplete runs the behavior’s update method. Now upon executing, the behavior checks to see if its
ran for 30 cycles by examining the physics objects time counter, if so it sets its status to complete. Now
suppose a more complex behavior inflates, then moves forward. First it runs its inflate sub-behavior by
checking its list of behaviors for one with a matching name, then checks its status. Upon confirming that its
first sub-behavior is complete it moves forward, and sets its own status to complete.

It is also possible for the decideNextBehavior =~ method to use a decision function to decide that a given
behavior is finished executing, regardless of its current status. Of course, a behavior may also fail, resulting
in some action by the control center.

Sub-behaviors are smaller behaviors performed as part of a larger action. This enables significant levels of
abstraction, allowing users to issue single commands and carry out vast and complex sequences of actions,
or small exact ones. For example, one could instruct the organism to simply inflate, or one could tell it to
segment which includes inflation.

http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial 1 1_behavior.html

http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_sensor.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_behavior.html�

2.5 Physics 7

2.5 Physics

The physics layer is responsible for simulating the deformations and handling the organisms interaction with
its environment through external forces. Each physics object possesses a list of executable deformations and
a geometric object. The main public interface of interest is the simulate method, which actually causes
forces to be calculated and exerted. Again, as the physics layer is merely an ABC, it is of much more
interest to discuss this class through an example of one of its derived classes.

An example derived class is the Euler physics object. This implementation relies on the simulation of a
spring-mass system to perform deformations. When the organism calls the simulation method, the Euler
object runs its simulation cycle for a set number of times, and then increments the global timer. During the
simulation cycle the organism has control of the CPU, and can not be interrupted. Consequently, the length
of this cycle should be kept short in order to allow the organism to check behavior status states, run decision
functions, and check its message board. If the length of the cycle is longer than the time required to run a
single behavior, then the organism will basically be idle for the remaining iterations. However, the running
deformation also has a runtime set by its calling behavior. So the physics object can stop simulating after
that runtime has expired.

http://www.sfu.ca/ ~ancintos/IDO/doxygen/html/classmial_1_1_physics.html

2.6 Deformations

Deformations manipulate the geometry of the organism. For example, in a physically-based spring-mass
implementation deformations move nodes, actuate springs, apply forces, and basically deform the geomet-
rical model. Much like behaviors, each deformation has an associated status and runtime, as well as run
method for its public interface. However, in this case deformations do not posses many sub-deformations.

As an example let us consider the inflate deformation. Upon being executed by an associated behavior it
begins applying forces normal to the model’s surface, causing it to inflate. In the case of a spring-mass
system these forces may be carried out by applying forces on individual nodes, or by increasing the rest-
lengths of springs. The concept of reversing the inflation to a deflation once the organism has passed from a
dark to bright (for example when segmenting dark object on a white background) is delegated to the control
center of the organism, and does not take place here. Instead only low-level tasks like actuating springs,
moving nodes, etc are carried out. This enables the execution of both prior and learned deformations [?],
where learned deformations are carried out by the associated learned behavior causing a sequence of spring
actuations. However, if the underlying shape representation is level sets based the inflation takes the form
of adding a constant to the embedding function in order to expand the zero-level set.

2.7 Geometric

The Geometric object houses the the actual topology of the organism. It handles adding and removing
nodes, as well as reading and writing the meshes to file. Consider two different example derived classes: the
VectorGeometry class, and the TubularGeometry class. The VectorGeometry class is implemented entirely
with vector geometry, while the TubularGeometry class is also derived from an ITK spatialobjects class.
Both classes provide the same public interface in terms of getting nodes, setting nodes, writing to file,
reading from file, etc. However, they each allow the user to take advantage of their inherit properties. So the
user can write a custom sensory class, that uses the additional functionality of the TubularGeometry class
without having to modify any internal code of the organism itself. In essence, the user can be dependent on

http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_physics.html�

the implementation when they want to be, and remain totaly independent in other situations by sticking to
the Geometric base class interface.

3 Conclusions

We have developed a powerful new framework for medical image segmentation and analysis that offers both
great flexibility and rigid design enforcement, thereby, ensuring maximum reusability, portability and sus-
tainability. Our framework makes use of many powerful features in ITK including filters, meshes, file 1O,
and spatial objects. We have also created a robust physically-based deformations layer. With the geometrical
layers binaryImageToMesh functionality, one can easily create deformable models and deform them using
our spring-mass deformation system or our level-set implementation. Furthermore, the added ability to con-
vert BYU surfaces into |itk: :MeshSpatialObjects and consequently, into deformable organisms should
prove a useful tool allowing level-set refinement, or physics-based interaction with segmentation results of
various existing projects.

4 Acknowledgements

We would like to thank Andy Rova for his development of the Phys_LevelSet class, Vincent Chu for his
role as lead developer of the KWWidgets viewer application, and Aaron Ward for his technical expertise
and discussions on fundamental framework design choices.

A Requirements

Though the framework itself only requires ITK 2.4 or greater, building the provided viewer has additional
requirements:

e VTK 5.0.0 http://www.vtk.org
e SOViewer (Feb 8, 2006) http://www.vtk.org/Wiki/SOViewer

e KWWidgets (Feb 8, 2006) http://www.kwwidgets.org/Wiki/KiWidgets

B Examples

B.1 Layer Examples

Various examples of the layers/modules explained in section ?? are available, with details provided in the
frameworks online documentation.

e Geom_MeshSpatialObject<dType,nDims, MType, VType>

http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial 1 1 geom mesh spatial
object .html

http://www.itk.org/Doxygen/html/classitk_1_1MeshSpatialObjects.html�
http://www.vtk.org�
http://www.vtk.org/Wiki/SOViewer�
http://www.kwwidgets.org/Wiki/KWWidgets�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_geom___mesh_spatial_object.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_geom___mesh_spatial_object.html�

B.2 Deformable Organism Examples 9

e Phys_Euler<DataType,TGradientImage,nDims,MType,VType>
http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial 1 1 phys euler.html

e Phys_LevelSet<DataType,InputlmageType,nDims,MType,VType>
http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial 1 1 phys level set.
html

e Beh_TranslateAll<Type,nDims>
http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial 1 1 beh translate all.
html

e Beh_UniformScale<Type,nDims>
http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial 1 1 beh uniform scale.
html

e Beh_SearchForObject<Type, TInputlmage,nDims>
http://www.sfu.ca/ ~ancintos/IDO/doxygen/html/classmial 1 1 beh search for
object .html

e Def_TranslateAll<Type,nDims>
http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial 1 1 def translate all.
html

e Def_UniformScale<Type,nDims>
http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial 1 1 def uniform scale.
html

e Ctrl_ScheduleDriven<class Type, int nDims>
http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial 1 1 ctrl schedule
driven.html

e Sense_Gradient<DataType, TInputlmage, TGradientImage, nDims>

http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial 1 1 sense_ gradient.
html

B.2 Deformable Organism Examples

There are numerous example DOs included with the framework.
e itkOrganism<ImageType, ImageType, GradientImageType, dType, nDims> A derived organism
based on a |itk::ImageToImageFilter that contains no default layers.

e Org_LevelSetSchedule<ImageType, ImageType, GradientImageType, dType, nDims> A
geodesic active contours [?] based DO that uses a schedule driven cognitive layer.

e Org_EulerSchedule<ImageType, ImageType, GradientimageType, dType, nDims> A 3D
spring-mass [?] based DO that uses a schedule driven cognitive layer.

http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_phys___euler.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_phys___level_set.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_phys___level_set.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_beh___translate_all.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_beh___translate_all.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_beh___uniform_scale.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_beh___uniform_scale.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_beh___search_for_object.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_beh___search_for_object.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_def___translate_all.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_def___translate_all.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_def___uniform_scale.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_def___uniform_scale.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_ctrl___schedule_driven.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_ctrl___schedule_driven.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_sense___gradient.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_sense___gradient.html�
http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageFilter.html�

10

C The Visual Interface to I-DO

We have also developed a graphical user interface to the I-DO framework, that allows its users to visualize
the geometry of created DOs as well as observe their deformations in real time. It gives the user the ability to
load DOs as dll files, while allowing the developer to define customized interfaces via the DefOrgAdapter
class. The GUI is based on, and therefore requires, KWWidegets, VTK, and SOViewer. Future versions
will facilitate interaction with DOs through mouse click driven forces, and possibly other forms of input.
Complete documentation of the viewer will be made available at a later date, but many details reside in its
doxygen.

http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial 1 1_def org viewer adapter
base.html

D Guide to users

This section provides information to those who wish to use, or contribute to the framework.

Hello I-DO

In this section we present a simple “Hello [I-DO] World” example that provides a step by step guide to how
a new user can build and run a simple DO.

1. Download and compile ITK 2.4 or greater (see [www.itk.org).

2. Download (http://mial.fas.sfu.ca/researchProject.php?s=157)and compile the I-DO
source code using CMake (www.cmake.org) and the CMakeLists.txt file found in the root-most di-
rectory. Set the itk _utilities_path to the utilities folder found in your ITK source directory.

3. Open defOrgs/examples/basic/CMakeLists.txt using Cmake and configure. Setting the
IDO_BUILD_PATH to wherever you built I-DO in step 2, and the IDO_PATH to YourLoca-
tion/defOrgs/source.

4. Compile the created project.

5. Run from command line, providing input and output image names, a schedule name, and a mesh
name. (e.g. test.mhd out.mhd eulerSchedule3D.txt cubeMesh3D.meta)

6. The DO will run, and output a final binary image using the file name provided.
Users can follow these procedures for any of the provided examples in the examples directory.

e Basic - The same example as shown in “Building A Deformable Organism”. An physically-based DO
using a schedule driven cognitive layer along with a few example behaviors and deformations.

e Advanced - A multi-organism application that uses two pre-made DOs in sequence.
Org _EulerSchedule begins the segmentation process and initializes Org _LevelSetSchedule with
its output, which then proceeds to refine the segmentation results before writing out to file.

http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_def_org_viewer_adapter_base.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_def_org_viewer_adapter_base.html�
www.itk.org�
http://mial.fas.sfu.ca/researchProject.php?s=157�
www.cmake.org�

11

Building A Deformable Organism

This example walks the reader through creating a DO by individualy instantiating and attaching the layers.
This is contrast to using an already created DO, which can be instantiated , setup, and used just like any ITK
filter.

The first step is to chose instantiate a DO shell (one having no built in layers) using the standard ITK
itk::SmartPointer |approach. In this case the DO is an ITK |itk::ImageToImageFilter | and must be
provided with an input image via the SetInput method.

typedef itk::ItkOrganism <ImageType, Imagelype, GradientImageType, float, 3> organismType;
organismIype::Pointer testOrg = organismIype::New();

std::cout << "Organism created..." << std::endl;

testOrg—>Set Input (reader—>GetOutput ()) ;

Next we will instantiate a sensor to calculate the gradient information used as an external force during the
deformation simulations by the Physics layer.

typedef Sense_Gradient<float, ImageType, GradientImageType, 3> gradientSensorType;
gradientSensorType: :Pointer gradientSensor = gradientSensorType::New();

The sensor requires its publicly defined sensorIn as input. Here we create a pointer to the class, and set its
values. This allows all sensors to be ran from a common run method, with their own customized input.

gradientSensorType: :sensorIn::Pointer input = gradientSensorType::sensorIn::New();

input->sigma = 1.0;

reader—>Update () ;

input->imageIn = reader—>GetOutput ();
The gradient sensor can then be ran.

gradientSensor—>run (input) ;
Finally, its output can be obtained by constructing an sensorOut |itk::SmartPointer |and providing the
appropriate downcast on the pointer returned by the getOutput method.

gradientSensorType: :sensorOut::Pointer output = (gradientSensorType::sensorOut *) (gradientSensor—>getOutput ())
Next create the Physics and Geometrical layers. Notice that the type of external force image is provided
as an input type to the Physics layer.

//Instantiate geomtery and physics layers

typedef Phys_Fuler<float,GradientImageType, 3> PhysLayerType;

typedef Geom MeshSpatialObject<float,3> GecmetricType;

PhysLayerType: :Pointer physlayer = PhysLayerType::New();
GeometricType: :Pointer geomlayer = GeometricType::New();

Then set the Physics layer to use the external force image calculated by the gradient sensor and the
newly constructed Geometrical layer, and setup the topology of the Geometric layer (in this case an
ITK |itk::MeshSpatialObject). Finally, attach both to the Organism .

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html�
http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageFilter.html�
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html�
http://www.itk.org/Doxygen/html/classitk_1_1MeshSpatialObject.html�

12

physLayer—>setExternalForces ((void *) & (output—>imageQut));
physLayer—>setGeometry (geomlayer) ;
std::cout << "External forces set." << std::endl;

geomLayer—>readTopologyFromFile (topologyInputFileName) ;
std::cout << "Topology read from '" << topologyInputFileName << "/..." << std::endl;

testOrg->setPhysicslayer (physLayer) ;
testOrg->setGeometriclayer (geomlayer) ;
std::cout << "Physics and Geometric layers added..." << std::endl;

Create a Cogntive layer, set its appropriate options, and attach it to the DO. In this case it only requires a
Schedule text file (e.g. eulerSchedule3D.txt).

Ctrl_ScheduleDriven<float, 3>::Pointer cgl = Ctrl_ScheduleDriven<float, 3>::New();
cgL—>setSchedule (scheduleFileName) ;
testOrg—>setCognitivelayer (cgl) ;

Now begin creating and attaching behaviors, and deformations. Note in this case, the behaviors and defor-
mations do not require any additional parameters or settings.

Beh TranslateAll<float, 3>::Pointer behl = Beh_TranslateAll<float,3>::New();
Beh UniformScale<float, 3>::Pointer beh2 = Beh_UniformScale<float,3>::New();
Def_Translation<float, 3>::Pointer defl = Def Translation<float,3>::New();

Def_UniformScale<float, 3>::Pointer def2 = Def_UniformScale<float,3>::New();

testOrg—>addBehaviour (behl) ;
testOrg—>addBehaviour (beh2) ;
testOrg—>addDeformation (defl);
testOrg->addDeformation (def?2) ;

The Organism is ready to run. Calling Update () on the writer will cause a single run of the DO, which will
simulate for one unit of DO time. Here we simulate for 25 units of DO time before updating the writer.

writer—>SetInput (testOrg->GetOutput ());
try
{
std::cout << "Running organism..." << std::endl;
for(int i=0; i<25;i++)
{
testOrg—>run();
std::cout << "one run" << std::endl;
}
writer—>Update () ;
}
catch (itk::ExceptionObiject & err)
{
std::cout << "ExceptionObject caught!" << std::endl;
std::cout << err << std::endl;
return -1;

References 13

Finally, in addition to the binary output available on the writer the DO’s mesh can be written back to file.

testOrg—>writeNodesToFile (nodeOutputFileName) ;
std::cout << "Nodes written to ’" << nodeQutputFileName << "' ." << std::endl;

Extending Existing DOs

Extending existing organisms is as easy as following the Building A Deformable Organism example and
attaching additional layers.

Creating New DOs and Layers

Detailed information about creating new DOs and layers will be included in this document in a later revision.
In the mean time, interested users are referred to the doxygen documentation which outlines how each pure
virtual function of the ABCs should be defined in a derived class. We will also provide skeleton code
generators, that will give those wishing to create new layers a “fill in the blanks” option.

http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/index.html

References

[1] Vincent Caselles, Ron Kimmel, and Guillermo Sapiro. Geodesic active contours. In ICCV, pages
694-699, 1995. B.2

[2] Ghassan Hamarneh, Tim McInerney, and Demetri Terzopoulos. Deformable organisms for automatic
medical image analysis. In MICCAI, pages 66-76, 2001. |1

[3] Ghassan Hamarneh and Chris Mclntosh. Physics-based deformable organisms for medical image anal-
ysis. SPIE Medical Imaging, 5747:326-335, 2005. 1

[4] G. Hamarnerh and C. Mclntosh. Parametric and Geometric Deformable Models: An application in
Biomaterials and Medical Imagery, chapter 12: Deformable Organisms for Medical Image Analysis.
Springer Publishers, 1 edition, 2006. |1

[5] C. McIntosh and G. Hamarnerh. Spinal crawlers: Deformable organisms for spinal cord segmentation
and analysis. MICCAI, 2006. 1

[6] C. McIntosh and G. Hamarnerh. Vessel crawlers: 3d physically-based deformable organisms for vasu-
lature segmentation and analysis. IEEE Conference on Computer Vision and Pattern Recognition, 2006.
1,11,B.2

[7] D. Terzopoulos, X. Tu, and R. Grzeszczuk. Artificial fishes: Autonomous locomotion, perception,
behavior, and learning in a simulated physical world. Artificial Life, 1(4):327-351, 1994. 2.6

http://www.sfu.ca/~cmcintos/IDO/doxygen/html/index.html�

-DO’: A “Deformable Organisms” framework
for ITK

Release 0.50
Chris MclIntosh and Ghassan Hamarneh

July 13, 2006

Medical Image Analysis Lab

School of Computing Science, Simon Fraser University
Burnaby, BC, Canada

{cmcintos,hamarneh} @cs.sfu.ca

Abstract

Medical image analysis is an important problem relating to the study of various diseases. Since their
inception to MICCALI in 2001, deformable organisms” have emerged as a fruitful methodology with
examples ranging from 2D corpus callosum segmentation to 3D vasculature and spinal cord segmenta-
tion. Essentially we have developed an artificial life framework that complements classical deformable
models (snakes and deformable meshes) with high-level, anatomically-driven control mechanisms. This
paper describes the integration of deformable organisms into the Insight Toolkit (ITK) www.itk.org

Our code attempts to bridge the ITK framework and coding style with deformable organism design
methodologies. In the interest of open science, as the framework develops it will serve as a basis for the
community to develop new deformable organisms as well as experiment with those recently published

by our group.

Contents
1 Introduction 2
1.1 ITK Deformable Organisms: Motivation and Introduction'. 4
DOs Requirements L e e e e e e e 4
2 Implementation 4
2.1 OrganiSm| e e e e e e e e e e e e 4
2.2 Control Center e e e 5
2.3 SENSOT . v v v v e e e e e e e e e e e e e e e 6
2.4 Behavior e e e 6
2.5 Physics . .. L e e 7
2.6 Deformations! e e e e e e 7
2.7 GEOMELIIC . . v v v v o e et e e e e e e e e e e e e e 7
3 Conclusions 8

4 Acknowledgements 8

www.itk.org�

A Requirements 8
B Examples 8
B.1 Layer Examples| e e e e e 8
B.2 Deformable Organism Examples| 9
C__The Visual Interface to I-DO 10
D Guide to users 10
Hello I-DO 0 o 10

Building A Deformable Organism| 11
Extending Existing DOs| e 13

Creating New DOs and Layers ittt 13

1 Introduction

In medical image analysis strategies based on deformable models, controlling the deformations of the mod-
els is a desirable goal to produce proper segmentations. Incorporating expert knowledge to automatically
guide deformations cannot be easily and elegantly achieved using the classical deformable model low-
level energy-based fitting mechanisms. Deformable Organisms (DOs), are a decision-making framework
for medical image analysis that complements bottom-up, data-driven deformable models with top-down,
knowledge-driven mode-fitting strategies in a layered fashion inspired by artificial life modeling concepts.
Intuitive and controlled deformations are carried out through behaviors. Sensory input from image data and
contextual knowledge about the analysis problem govern these different behaviors.

Since their conception in 2001 [2], various DOs-based approaches for medical image analysis have been
developed (Figure [1). In this original work, a variety of DOs where demonstrated with applications to lo-
cating the lateral ventricles, caudate nuclei, and putamina structures in transversal brain magnetic resonance
image (MRI) slices, as well as DOs for the segmentation of vessels in 2D angiography. In [3]], Hamarneh
and MclIntosh augmented DOs to include physically-based and controlled deformations demonstrating an
application to corpus callosum segmentation in mid-sagittal magnetic resonance images (MRI). Recently,
Mclntosh and Hamarneh [6] introduced DOs 3D DOs for vascular segmentation and analysis, which take
advantage of their sensors and deformation layer to perform locally optimal vascular-specific filtering. An
extension of that work, [3]], introduces DOs for spinal cord segmentation and analysis and demonstrates
extended filters for structures varying from elliptical to tubular. In each case DOs have demonstrated their
key advantages over other leading techniques. Namely, their ability to produce increased accuracy, allow
intuitive user-interaction to control or repair the segmentation where other methods would require being
restarted with some type of parameter adjustment, facilitate greater analysis and labeling abilities than those
methods producing binary outputs, the ready ability to incorporate image or shape-based prior-knowledge,
and a modular framework allowing for incorporating new sensors (image filters), decision models, shape
representations, and deformation mechanisms.

Though a summary is provided here, complete research-oriented look at DOs can be found in [4]. DOs are
built following a multilevel AL modelling approach consisting of four primary layers: cognitive, behavioral,
physical, and geometrical. Specifically, the cognitive layer makes decisions based on the DOs current state,
anatomical knowledge, and its surrounding environment (the image). Decisions could be made to sense

Figure 1: An assortment of deformable organisms showing(left to right, top to bottom): Physically-based corpus cal-
losum, Geometrically-based corpus callosum, Putamina and ventricle organisms, 2D Angiography, 3D ‘spinal crawler’,
and 3D ‘vessel crawler’. Related images and videos can be found at http://mial.fas.sfu.ca/researchProject.
php?s=157

information, to deform based on sensory data, to illicit help from the user, or to terminate the segmentation
process. All of these actions are described under the behavioral layer of the organism, and they rely upon
both the physical and geometrical layers for implementation. For example, in the context of our ‘vessel
crawlers’ [6], the act of moving towards a sensed target location is described by the ‘growing’ behavioral
method. The cognitive center gathers sensory input using the ‘sense-to-grow’ sensory module, decides the
correct location via the ‘where-to-grow’ decision module, elicits the act of ‘growing’ , and then conforms
to the vascular walls by fitting’. In turn, each of these methods relies upon the physical and geometrical
layers to carry out tasks, such as maintaining model stability. Consequently, we have a framework with
many independent layers of abstraction, each built upon the implementation of independent modules and or
processes.

We begin with a motivation of our framework in section|1.1, and a discussion of the general requirements of
DOs that the framework is set out to meet in/l.1. Sections (2.1-2.7) provide an overview of how each layer
is designed and implemented in the framework. We summarize in section 3. The appendices provide the
most information on using the framework with a requirements listing (section /A, examples of layers and
organisms (section B)), a guide to building and running your first organism (section D)), and information on
extending organisms and the framework (section D).

http://mial.fas.sfu.ca/researchProject.php?s=157�
http://mial.fas.sfu.ca/researchProject.php?s=157�

1.1 ITK Deformable Organisms: Motivation and Introduction 4

1.1 ITK Deformable Organisms: Motivation and Introduction

Previously, the major drawback of DOs has been their restriction to a closed-source MATLAB framework.
Though straightforward and intuitive in design they are not readily extendable by the general medical im-
age analysis community in this form. ITK, however, enjoys a large user base and exemplifies the notion
of an open-source, adoptable, and extendable framework. Furthermore, the incorporation of ITK grants
DOs access to faster processing, multi-threading, additional image processing functions and libraries, and
straightforward compatibility with the powerful visualization capabilities of the Visualization Toolkit (VTK)
www . vtk . Oorg

DOs Requirements

DOs are constructed through the realization of many abstract and independent concepts/layers (cognitive,
behavioral, physical, geometrical, sensors). As such, a DO framework must reflect this modular design by
allowing users to replace one implementation (layer) for another. For example, new shape representations
should be introducible without re-designing existing cognitive layers. To this end, the interface between
layers must be consistent across implementations (plug and play), and clearly defined.

The framework must also be extendable, allowing it to grow and advance as the concept of DOs does. That
is to say, it should support current research into new types of DOs designed for different applications, with
increasingly advanced decision making abilities and deforming abilities.

2 Implementation

This section provides details on the implementation of the I-DO framework. Each section (2.1-2.7) describes
a DO layer in detail within the context of our I-DO framework.

2.1 Organism

The organism 1is the abstract base class (ABC) that acts as a container for most of the framework. Each
organism posses its world, a control center, a physics layer, and a geometrical layer. It provides public inter-
faces through which users can add deformations and behaviors, as well as attach the cognitive, physical, and
geometrical layers. Its important to understand that as an ABC, the organism class itself is not instantiated.
It is designed as such so that no matter the derivation (type of organism), a DO application can simply call
its associated public interface. Consequently, of most interest are the derived classes themselves.

The itkOrganism derived class can be instantiated and used as a fully functional organism, or can be used
as a base class of another more specialized organism. It inherits from both the Organism ABC, and ITK’s
ImageTolmageFilter class. Though many other classes could be used, the ImageToImageFilter class allows
these particular DOs to be incorporated as autonomous tools in existing ITK filtering pipelines (taking as
input an image and producing as output a segmented image). More details on this derived class are provided
at http://www.sfu.ca/ ~amcintos/IDO/doxygen/html/classmial 1_1_organism.html

www.vtk.org�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_organism.html�

2.2 Control Center 5

) // Organis& \

Control Center Physics

m— Decisions I Geometric I

User < > W D’

Sensors]—b[Behaviors]l Deformations

a8

a

K\ /;_/J

N
[Environment

Figure 2: The basic outline of our deformable organism framework. Dark arrows represent directions
of communication between objects, while hollow arrows represent one class running another’s public run
method, and encapsulation represents one class containing another. For example, the behavior class controls
the deformations class through the physics class.

2.2 Control Center

The control center is designed to handle all “intelligent” aspects of the organism. It has associated behaviors
and sensory modules, and provides the organism with its ability to make decisions (e.g. next behavior to
run, image data to sense, etc.). It monitors the status of the behaviors, deformations, and sensors, then makes
decisions based upon their states and outputs.

Consequently, this class exploits much of the complex versatility of the framework obtained through the
use of ABCs, streams, and structures. Through a single list of sensors and behaviors, the cognitive center
can perform a variety of actions on any defined geometrical or physical type regardless of the varying
input requirements they may have. For example, the decision to “translate” will trigger a spatial translation
behavior, which will in turn trigger the appropriate translate deformation as it pertains to the particular
physical layer of the model. All without the cognitive layer having any regard for which derived physical
layer and deformation class, or geometrical layer and shape representation is being called.

The control center accomplishes this by using a “run-by-name” design methodology, where once it decides
upon (or is asked to run) a particular named behavior it will search its list of known behaviors for one with
the matching name.

By calling a control center’s Update method the organism will conceptually cause the control center to
do its thinking. If no current behavior exists it will decide on one (via the derived classes provided
DecideNextBehavior method). Otherwise, it will check the status of the behavior (via its IsFinished
method) cleaning up after it, and deciding on a new behavior if it has finished, and updating it (Update
method) if it has not.

http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial 1 1_control_center.html

http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_control_center.html�

2.3 Sensor 6

2.3 Sensor

Organisms perceive their surroundings through sensory modules. They provide a means by which to gather
statistics and characteristics of its own geometry and the world (image data) in which it resides. At any
given time a decision function may possess many different sensory objects, each of which can report back
different sensory information (e.g. gray level intensity, gradient magnitude and direction, texture features,
etc). It is important to note that some sensors will be implementation dependent, while others will not. For
example, it makes no sense to run a vascular bifurcation sensory module on a corpus callosum organism
because the latter is only 2D and has a completely different topology and appearance characteristics.

In order to run a sensor one must use its publicly defined sensorIn and sensorOut types to create the
input arguments and receive the output. This allows maximum flexibility in the parameters a sensor can
have, while still enabling any sensor to be ran abstractly. Through this flexibility users can setup and run
complex pipelines of ITK filters within the sensors, while passing their variety of input requirements in via
the sensorln type.

http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial_1_1_sensor.html

2.4 Behavior

Behaviors are basically actions, or sequences of actions. As such, each behavior has a name, a state, a pointer
to the physical layer, and multiple sub-behaviors, and deformations. To ensure meaningful interaction with
other organisms and users each behavior has a name. So for example, despite the action “running” being
carried out differently by different animals each can always be told to run, or report that it is running. Upon
being executed the behavior simply begins executing its main body. Again, the behavior class is simply an
ABC. So let’s consider a few example derived classes to illustrate the subtleties of this class.

Our first simple example behavior is ‘inflate for 30 cycles’. The act of the organism inflating itself is physics
system dependant, so the behavior runs its associated inflate deformation by calling the runDeformation
method of the physics object. The behavior then sets its status to incomplete. At the next run of its
decideNextBehavor method the control center checks the status of the inflate behavior, and upon see-
ing incomplete runs the behavior’s update method. Now upon executing, the behavior checks to see if its
ran for 30 cycles by examining the physics objects time counter, if so it sets its status to complete. Now
suppose a more complex behavior inflates, then moves forward. First it runs its inflate sub-behavior by
checking its list of behaviors for one with a matching name, then checks its status. Upon confirming that its
first sub-behavior is complete it moves forward, and sets its own status to complete.

It is also possible for the decideNextBehavior =~ method to use a decision function to decide that a given
behavior is finished executing, regardless of its current status. Of course, a behavior may also fail, resulting
in some action by the control center.

Sub-behaviors are smaller behaviors performed as part of a larger action. This enables significant levels of
abstraction, allowing users to issue single commands and carry out vast and complex sequences of actions,
or small exact ones. For example, one could instruct the organism to simply inflate, or one could tell it to
segment which includes inflation.

http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial 1 1_behavior.html

http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_sensor.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_behavior.html�

2.5 Physics 7

2.5 Physics

The physics layer is responsible for simulating the deformations and handling the organisms interaction with
its environment through external forces. Each physics object possesses a list of executable deformations and
a geometric object. The main public interface of interest is the simulate method, which actually causes
forces to be calculated and exerted. Again, as the physics layer is merely an ABC, it is of much more
interest to discuss this class through an example of one of its derived classes.

An example derived class is the Euler physics object. This implementation relies on the simulation of a
spring-mass system to perform deformations. When the organism calls the simulation method, the Euler
object runs its simulation cycle for a set number of times, and then increments the global timer. During the
simulation cycle the organism has control of the CPU, and can not be interrupted. Consequently, the length
of this cycle should be kept short in order to allow the organism to check behavior status states, run decision
functions, and check its message board. If the length of the cycle is longer than the time required to run a
single behavior, then the organism will basically be idle for the remaining iterations. However, the running
deformation also has a runtime set by its calling behavior. So the physics object can stop simulating after
that runtime has expired.

http://www.sfu.ca/ ~ancintos/IDO/doxygen/html/classmial_1_1_physics.html

2.6 Deformations

Deformations manipulate the geometry of the organism. For example, in a physically-based spring-mass
implementation deformations move nodes, actuate springs, apply forces, and basically deform the geomet-
rical model. Much like behaviors, each deformation has an associated status and runtime, as well as run
method for its public interface. However, in this case deformations do not posses many sub-deformations.

As an example let us consider the inflate deformation. Upon being executed by an associated behavior it
begins applying forces normal to the model’s surface, causing it to inflate. In the case of a spring-mass
system these forces may be carried out by applying forces on individual nodes, or by increasing the rest-
lengths of springs. The concept of reversing the inflation to a deflation once the organism has passed from a
dark to bright (for example when segmenting dark object on a white background) is delegated to the control
center of the organism, and does not take place here. Instead only low-level tasks like actuating springs,
moving nodes, etc are carried out. This enables the execution of both prior and learned deformations [7],
where learned deformations are carried out by the associated learned behavior causing a sequence of spring
actuations. However, if the underlying shape representation is level sets based the inflation takes the form
of adding a constant to the embedding function in order to expand the zero-level set.

2.7 Geometric

The Geometric object houses the the actual topology of the organism. It handles adding and removing
nodes, as well as reading and writing the meshes to file. Consider two different example derived classes: the
VectorGeometry class, and the TubularGeometry class. The VectorGeometry class is implemented entirely
with vector geometry, while the TubularGeometry class is also derived from an ITK spatialobjects class.
Both classes provide the same public interface in terms of getting nodes, setting nodes, writing to file,
reading from file, etc. However, they each allow the user to take advantage of their inherit properties. So the
user can write a custom sensory class, that uses the additional functionality of the TubularGeometry class
without having to modify any internal code of the organism itself. In essence, the user can be dependent on

http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_physics.html�

the implementation when they want to be, and remain totaly independent in other situations by sticking to
the Geometric base class interface.

3 Conclusions

We have developed a powerful new framework for medical image segmentation and analysis that offers both
great flexibility and rigid design enforcement, thereby, ensuring maximum reusability, portability and sus-
tainability. Our framework makes use of many powerful features in ITK including filters, meshes, file 1O,
and spatial objects. We have also created a robust physically-based deformations layer. With the geometrical
layers binaryImageToMesh functionality, one can easily create deformable models and deform them using
our spring-mass deformation system or our level-set implementation. Furthermore, the added ability to con-
vert BYU surfaces into |itk: :MeshSpatialObjects and consequently, into deformable organisms should
prove a useful tool allowing level-set refinement, or physics-based interaction with segmentation results of
various existing projects.

4 Acknowledgements

We would like to thank Andy Rova for his development of the Phys_LevelSet class, Vincent Chu for his
role as lead developer of the KWWidgets viewer application, and Aaron Ward for his technical expertise
and discussions on fundamental framework design choices.

A Requirements

Though the framework itself only requires ITK 2.4 or greater, building the provided viewer has additional
requirements:

e VTK 5.0.0 http://www.vtk.org
e SOViewer (Feb 8, 2006) http://www.vtk.org/Wiki/SOViewer

e KWWidgets (Feb 8, 2006) http://www.kwwidgets.org/Wiki/KiWidgets

B Examples

B.1 Layer Examples

Various examples of the layers/modules explained in section 2 are available, with details provided in the
frameworks online documentation.

e Geom_MeshSpatialObject<dType,nDims, MType, VType>

http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial 1 1 geom mesh spatial
object .html

http://www.itk.org/Doxygen/html/classitk_1_1MeshSpatialObjects.html�
http://www.vtk.org�
http://www.vtk.org/Wiki/SOViewer�
http://www.kwwidgets.org/Wiki/KWWidgets�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_geom___mesh_spatial_object.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_geom___mesh_spatial_object.html�

B.2 Deformable Organism Examples 9

e Phys_Euler<DataType,TGradientImage,nDims,MType,VType>
http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial 1 1 phys euler.html

e Phys_LevelSet<DataType,InputlmageType,nDims,MType,VType>
http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial 1 1 phys level set.
html

e Beh_TranslateAll<Type,nDims>
http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial 1 1 beh translate all.
html

e Beh_UniformScale<Type,nDims>
http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial 1 1 beh uniform scale.
html

e Beh_SearchForObject<Type, TInputlmage,nDims>
http://www.sfu.ca/ ~ancintos/IDO/doxygen/html/classmial 1 1 beh search for
object .html

e Def_TranslateAll<Type,nDims>
http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial 1 1 def translate all.
html

e Def_UniformScale<Type,nDims>
http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial 1 1 def uniform scale.
html

e Ctrl_ScheduleDriven<class Type, int nDims>
http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial 1 1 ctrl schedule
driven.html

e Sense_Gradient<DataType, TInputlmage, TGradientImage, nDims>

http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial 1 1 sense_ gradient.
html

B.2 Deformable Organism Examples

There are numerous example DOs included with the framework.
e itkOrganism<ImageType, ImageType, GradientImageType, dType, nDims> A derived organism
based on a |itk::ImageToImageFilter that contains no default layers.

e Org_LevelSetSchedule<ImageType, ImageType, GradientImageType, dType, nDims> A
geodesic active contours [[1] based DO that uses a schedule driven cognitive layer.

e Org_EulerSchedule<ImageType, ImageType, GradientimageType, dType, nDims> A 3D
spring-mass [6] based DO that uses a schedule driven cognitive layer.

http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_phys___euler.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_phys___level_set.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_phys___level_set.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_beh___translate_all.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_beh___translate_all.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_beh___uniform_scale.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_beh___uniform_scale.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_beh___search_for_object.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_beh___search_for_object.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_def___translate_all.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_def___translate_all.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_def___uniform_scale.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_def___uniform_scale.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_ctrl___schedule_driven.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_ctrl___schedule_driven.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_sense___gradient.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_sense___gradient.html�
http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageFilter.html�

10

C The Visual Interface to I-DO

We have also developed a graphical user interface to the I-DO framework, that allows its users to visualize
the geometry of created DOs as well as observe their deformations in real time. It gives the user the ability to
load DOs as dll files, while allowing the developer to define customized interfaces via the DefOrgAdapter
class. The GUI is based on, and therefore requires, KWWidegets, VTK, and SOViewer. Future versions
will facilitate interaction with DOs through mouse click driven forces, and possibly other forms of input.
Complete documentation of the viewer will be made available at a later date, but many details reside in its
doxygen.

http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/classmial 1 1_def org viewer adapter
base.html

D Guide to users

This section provides information to those who wish to use, or contribute to the framework.

Hello I-DO

In this section we present a simple “Hello [I-DO] World” example that provides a step by step guide to how
a new user can build and run a simple DO.

1. Download and compile ITK 2.4 or greater (see [www.itk.org).

2. Download (http://mial.fas.sfu.ca/researchProject.php?s=157)and compile the I-DO
source code using CMake (www.cmake.org) and the CMakeLists.txt file found in the root-most di-
rectory. Set the itk _utilities_path to the utilities folder found in your ITK source directory.

3. Open defOrgs/examples/basic/CMakeLists.txt using Cmake and configure. Setting the
IDO_BUILD_PATH to wherever you built I-DO in step 2, and the IDO_PATH to YourLoca-
tion/defOrgs/source.

4. Compile the created project.

5. Run from command line, providing input and output image names, a schedule name, and a mesh
name. (e.g. test.mhd out.mhd eulerSchedule3D.txt cubeMesh3D.meta)

6. The DO will run, and output a final binary image using the file name provided.
Users can follow these procedures for any of the provided examples in the examples directory.

e Basic - The same example as shown in “Building A Deformable Organism”. An physically-based DO
using a schedule driven cognitive layer along with a few example behaviors and deformations.

e Advanced - A multi-organism application that uses two pre-made DOs in sequence.
Org _EulerSchedule begins the segmentation process and initializes Org _LevelSetSchedule with
its output, which then proceeds to refine the segmentation results before writing out to file.

http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_def_org_viewer_adapter_base.html�
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_def_org_viewer_adapter_base.html�
www.itk.org�
http://mial.fas.sfu.ca/researchProject.php?s=157�
www.cmake.org�

11

Building A Deformable Organism

This example walks the reader through creating a DO by individualy instantiating and attaching the layers.
This is contrast to using an already created DO, which can be instantiated , setup, and used just like any ITK
filter.

The first step is to chose instantiate a DO shell (one having no built in layers) using the standard ITK
itk::SmartPointer |approach. In this case the DO is an ITK |itk::ImageToImageFilter | and must be
provided with an input image via the SetInput method.

typedef itk::ItkOrganism <ImageType, Imagelype, GradientImageType, float, 3> organismType;
organismIype::Pointer testOrg = organismIype::New();

std::cout << "Organism created..." << std::endl;

testOrg—>Set Input (reader—>GetOutput ()) ;

Next we will instantiate a sensor to calculate the gradient information used as an external force during the
deformation simulations by the Physics layer.

typedef Sense_Gradient<float, ImageType, GradientImageType, 3> gradientSensorType;
gradientSensorType: :Pointer gradientSensor = gradientSensorType::New();

The sensor requires its publicly defined sensorIn as input. Here we create a pointer to the class, and set its
values. This allows all sensors to be ran from a common run method, with their own customized input.

gradientSensorType: :sensorIn::Pointer input = gradientSensorType::sensorIn::New();

input->sigma = 1.0;

reader—>Update () ;

input->imageIn = reader—>GetOutput ();
The gradient sensor can then be ran.

gradientSensor—>run (input) ;
Finally, its output can be obtained by constructing an sensorOut |itk::SmartPointer |and providing the
appropriate downcast on the pointer returned by the getOutput method.

gradientSensorType: :sensorOut::Pointer output = (gradientSensorType::sensorOut *) (gradientSensor—>getOutput ())
Next create the Physics and Geometrical layers. Notice that the type of external force image is provided
as an input type to the Physics layer.

//Instantiate geomtery and physics layers

typedef Phys_Fuler<float,GradientImageType, 3> PhysLayerType;

typedef Geom MeshSpatialObject<float,3> GecmetricType;

PhysLayerType: :Pointer physlayer = PhysLayerType::New();
GeometricType: :Pointer geomlayer = GeometricType::New();

Then set the Physics layer to use the external force image calculated by the gradient sensor and the
newly constructed Geometrical layer, and setup the topology of the Geometric layer (in this case an
ITK |itk::MeshSpatialObject). Finally, attach both to the Organism .

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html�
http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageFilter.html�
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html�
http://www.itk.org/Doxygen/html/classitk_1_1MeshSpatialObject.html�

12

physLayer—>setExternalForces ((void *) & (output—>imageQut));
physLayer—>setGeometry (geomlayer) ;
std::cout << "External forces set." << std::endl;

geomLayer—>readTopologyFromFile (topologyInputFileName) ;
std::cout << "Topology read from '" << topologyInputFileName << "/..." << std::endl;

testOrg->setPhysicslayer (physLayer) ;
testOrg->setGeometriclayer (geomlayer) ;
std::cout << "Physics and Geometric layers added..." << std::endl;

Create a Cogntive layer, set its appropriate options, and attach it to the DO. In this case it only requires a
Schedule text file (e.g. eulerSchedule3D.txt).

Ctrl_ScheduleDriven<float, 3>::Pointer cgl = Ctrl_ScheduleDriven<float, 3>::New();
cgL—>setSchedule (scheduleFileName) ;
testOrg—>setCognitivelayer (cgl) ;

Now begin creating and attaching behaviors, and deformations. Note in this case, the behaviors and defor-
mations do not require any additional parameters or settings.

Beh TranslateAll<float, 3>::Pointer behl = Beh_TranslateAll<float,3>::New();
Beh UniformScale<float, 3>::Pointer beh2 = Beh_UniformScale<float,3>::New();
Def_Translation<float, 3>::Pointer defl = Def Translation<float,3>::New();

Def_UniformScale<float, 3>::Pointer def2 = Def_UniformScale<float,3>::New();

testOrg—>addBehaviour (behl) ;
testOrg—>addBehaviour (beh2) ;
testOrg—>addDeformation (defl);
testOrg->addDeformation (def?2) ;

The Organism is ready to run. Calling Update () on the writer will cause a single run of the DO, which will
simulate for one unit of DO time. Here we simulate for 25 units of DO time before updating the writer.

writer—>SetInput (testOrg->GetOutput ());
try
{
std::cout << "Running organism..." << std::endl;
for(int i=0; i<25;i++)
{
testOrg—>run();
std::cout << "one run" << std::endl;
}
writer—>Update () ;
}
catch (itk::ExceptionObiject & err)
{
std::cout << "ExceptionObject caught!" << std::endl;
std::cout << err << std::endl;
return -1;

References 13

Finally, in addition to the binary output available on the writer the DO’s mesh can be written back to file.

testOrg—>writeNodesToFile (nodeOutputFileName) ;
std::cout << "Nodes written to ’" << nodeQutputFileName << "' ." << std::endl;

Extending Existing DOs

Extending existing organisms is as easy as following the Building A Deformable Organism example and
attaching additional layers.

Creating New DOs and Layers

Detailed information about creating new DOs and layers will be included in this document in a later revision.
In the mean time, interested users are referred to the doxygen documentation which outlines how each pure
virtual function of the ABCs should be defined in a derived class. We will also provide skeleton code
generators, that will give those wishing to create new layers a “fill in the blanks” option.

http://www.sfu.ca/ ~cmcintos/IDO/doxygen/html/index.html

References

[1] Vincent Caselles, Ron Kimmel, and Guillermo Sapiro. Geodesic active contours. In ICCV, pages
694-699, 1995. B.2

[2] Ghassan Hamarneh, Tim McInerney, and Demetri Terzopoulos. Deformable organisms for automatic
medical image analysis. In MICCAI, pages 66-76, 2001. |1

[3] Ghassan Hamarneh and Chris Mclntosh. Physics-based deformable organisms for medical image anal-
ysis. SPIE Medical Imaging, 5747:326-335, 2005. 1

[4] G. Hamarnerh and C. Mclntosh. Parametric and Geometric Deformable Models: An application in
Biomaterials and Medical Imagery, chapter 12: Deformable Organisms for Medical Image Analysis.
Springer Publishers, 1 edition, 2006. |1

[5] C. McIntosh and G. Hamarnerh. Spinal crawlers: Deformable organisms for spinal cord segmentation
and analysis. MICCAI, 2006. 1

[6] C. McIntosh and G. Hamarnerh. Vessel crawlers: 3d physically-based deformable organisms for vasu-
lature segmentation and analysis. IEEE Conference on Computer Vision and Pattern Recognition, 2006.
1,11,B.2

[7] D. Terzopoulos, X. Tu, and R. Grzeszczuk. Artificial fishes: Autonomous locomotion, perception,
behavior, and learning in a simulated physical world. Artificial Life, 1(4):327-351, 1994. 2.6

http://www.sfu.ca/~cmcintos/IDO/doxygen/html/index.html�

I-DO: A “Deformable Organisms” framework for
ITK

Release 0.50
Chris Mclntosh and Ghassan Hamarneh

July 21, 2006

Medical Image Analysis Lab

School of Computing Science, Simon Fraser University
Burnaby, BC, Canada
{cmcintos,hamarnél@cs.sfu.ca

Abstract

Medical image analysis is an important problem relatinght® $tudy of various diseases. Since their
introduction to MICCAI in 2001, "deformable organisms” lee@merged as a fruitful methodology with
examples ranging from 2D corpus callosum segmentation toé@ulature and spinal cord segmen-
tation. Essentially we previously have developed an adifiife framework that complements the
geometrical and physical layers of classical deformabléetso(snakes and deformable meshes) with
high-level behavioral and cognitive layers that facigtahatomically-driven control mechanisms. This
paper describes the integration of deformable organistoghie Insight Toolkit (ITK)www.itk.org . In
our proposed implementation we attempt to bridge the ITkh&aork and coding style with deformable
organism design methodologies. In the interest of opemsejeas the framework develops it will serve
as a basis for the community to develop new deformable osganias well as experiment with those
recently published by our group. Further, as the design @fiTiK Deformable Organisms (I-DO) is
highly modular, researchers and developers can exchamgeorents (spatial objects, dynamic simula-
tion engines, image sensors, etc) allowing in the futurddst development of new custom deformable
organisms for different clinical applications.

Contents

1 Introduction 2
1.1 ITK Deformable Organisms: Motivation and Introduction 4
1.2 DOsRequirements e 4

2 Implementation 4
2.1 Organism. e 4
2.2 ControlCenter e 5
2.3 SENSOL . . . e e e e 6
2.4 Behavior e 6
25 PhysiCS 7
2.6 Deformations. e 7

2.7 GEOMELNIC e e 7

www.itk.org

3 Conclusions 8

4 Acknowledgements 8

A Requirements 8

B Examples 8
B.1 LayerExamples e e 8
B.2 Deformable Organism Examples. 9

C TheVisual Interfaceto1-DO 9

D Guidetousers 10
Hello I-DO e 10
Building A Deformable Organism. 10
Extending Existing DOS e 13
CreatingNew DOsand Layers. it e e 13

1 Introduction

In medical image analysis strategies based on deformable models, contradlidgftinmations of the mod-
els is a desirable goal to produce proper segmentations. Incorporapeg &nowledge to automatically
guide deformations cannot be easily and elegantly achieved using thecalateformable model low-
level energy-based fitting mechanisms. Deformable Organisms (DOSs), ggeision-making framework
for medical image analysis that complements bottom-up, data-driven deflermalolels with top-down,
knowledge-driven mode-fitting strategies in a layered fashion inspirettiicial life modeling concepts.
Intuitive and controlled deformations are carried out through behavassory input from image data and
contextual knowledge about the analysis problem govern these difteegaviors.

Since their introduction in 20013], various DOs-based approaches for medical image analysis hane bee
developed (Figurd). In this original work, a variety of DOs where demonstrated with applicattorio-
cating the lateral ventricles, caudate nuclei, and putamina structures iversaisrain magnetic resonance
image (MRI) slices, as well as DOs for the segmentation of vessels in 2Dgaaghyy. In], DOs were
augmented to include physically-based and controlled deformations deatorgsan application to corpus
callosum segmentation in mid-sagittal magnetic resonance images (MRI).tiReDéds were extended to
3D and applied to vascular segmentation and analysis. The so called ‘wesslers’ were equipped with
sensors, decision modules, and deformation layers suited for vaseu[dturAn extension of that work
introduces DOs for spinal cord segmentation and analysis and demaomgteatbility to efficiently replace
modules of existing DOs to create new solutions. The ‘spinal crawlers’ngeloppossessed a decision mod-
ule to detect branching and their sensors were adapted to detect elliptisalsectionsd]. In each case
DOs have demonstrated their key advantages over other leading technidamely, their ability to pro-
duce increased accuracy, allow intuitive user-interaction to contramair the segmentation where other
methods would require being restarted with some type of parameter adjustawdlitgté greater analysis
and labeling abilities than those methods producing binary outputs, the rb#gitly ta incorporate image
or shape-based prior-knowledge, and a modular framework allowimgdorporating new sensors (image
filters), decision models, shape representations, and deformation risgnkan

Figure 1: An assortment of deformable organisms showing(left to right, top to bottom): Physically-
based corpus callosum, Geometrically-based corpus callosum, Putamina and ventricle organisms, 2D An-
giography, 3D ‘spinal crawler’, and 3D ‘vessel crawler' Related images and videos can be found at
http://mial.fas.sfu.ca/researchProject.php?s=157

Though a summary is provided here, complete research-oriented lodRsat&h be found ing]. DOs are
built following a multilevel AL modelling approach consisting of four primary lesie&ognitive, behavioral,
physical, and geometrical. Specifically, the cognitive layer makes decisions based on the DOsitstate,
anatomical knowledge, and its surrounding environment (the image). iBexisould be made to sense
information, to deform based on sensory data, to illicit help from the uséw, terminate the segmentation
process. All of these actions are described under the behavioraldbffee organism, and they rely upon
both the physical and geometrical layers for implementation. For example, iotiiext of our ‘vessel
crawlers’ [7], the act of moving towards a sensed target location is described Bygrtweing’ behavioral
method. The cognitive center gathers sensory input usintgémse-to-growsensory module, decides the
correct location via thévhere-to-grow’decision module, elicits the act @frowing’ , and then conforms
to the vascular walls btfitting’. In turn, each of these methods relies upon the physical and geometrical
layers to carry out tasks, such as maintaining model stability. Consequestlyave a framework with
many independent layers of abstraction, each built upon the implementatmaependent modules and or
processes.

We begin with a motivation of our ITK-Deformable Organisms (I-DO) framdwio sectionl.l, and a
discussion of the general requirements of DOs that the framework istsetimeet inl.2 Sections2.1-2.7)
provide an overview of how each layer is designed and implemented in thevirark. We summarize in
section3. The appendices provide the most information on using the framework wattarements listing

http://mial.fas.sfu.ca/researchProject.php?s=157

1.1 ITK Deformable Organisms: Motivation and Introduction 4

(sectionA), examples of layers and organisms (secByna description of our visual interface (sectioh
a guide to building and running your first organism (sect@n and information on extending organisms
and the framework (sectidn).

1.1 ITK Deformable Organisms: Motivation and Introduction

Previously, the major drawback of DOs has been their restriction to a etkmsede MATLAB framework.
Though straightforward and intuitive in design they are not readily exigledby the general medical im-
age analysis community in this form. ITK, however, enjoys a large user draexemplifies the notion
of an open-source, adoptable, and extendable framework. Furtreerthe incorporation of ITK grants
DOs access to faster processing, multi-threading, additional image pimgédsnctions and libraries, and
straightforward compatibility with the powerful visualization capabilities of thaiglization Toolkit (VTK)
www.vtk.org

1.2 DOs Requirements

DOs are constructed through the realization of many abstract and irdkyieconcepts/layers (cognitive,
behavioral, physical, geometrical, sensors). As such, a DO framewask reflect this modular design by
allowing users to replace one implementation (layer) for another. For exanmgeshape representations
should be introducible without re-designing existing cognitive layers. ®aédhd, the interface between
layers must be consistent across implementations (plug and play), arlg diefared.

The framework must also be extendable, allowing it to grow and advaribe asncept of DOs does. That
is to say, it should support current research into new types of DQgrakfor different applications, with
increasingly advanced decision making and deformation abilities.

2 Implementation

This section provides details on the implementation of the I-DO framework. gstton 2.1-2.7) describes
a DO layer in detail within the context of our I-DO framework. A high leve¢oxiew of the DOs framework
is shown in Figure.

2.1 Organism

The organism is the abstract base class (ABC) that acts as a container for most oatheviork. Each
organism posses its world, a control center, a physics layer, anchaeggeal layer. It provides public inter-
faces through which users can add deformations and behaviorsll as atach the cognitive, physical, and
geometrical layers. Its important to understand that as an ABC, the omyaldss itself is not instantiated.
It is designed as such so that no matter the derivation (type of organi€h@),application can simply call
its associated public interface. Consequently, of most interest are thiedlelasses themselves.

TheitkOrganism derived class can be instantiated and used as a fully functional orgaisam be used
as a base class of another more specialized organism. It inherits fronthieoBirganism ABC, and ITK’s
ImageTolmageFilter class. Though many other classes could be usedhapeTolmageFilter class allows
these particular DOs to be incorporated as autonomous tools in existing ITn{ltgipelines (taking as

www.vtk.org

2.2 Control Center 5

) // Organism\ \

Control Center Physics

—> Decisions I Geometric I

User < »> ﬂ'

Sensors]—b[Behaviors]l Deformations

a8

a

~\

Environment

\\ /;_/j
[

Figure 2: The basic outline of the deformable organism framework. Dadwa represent directions of
communication between objects, while hollow arrows represent one clasgguanother’s publigun
method, and encapsulation represents one class containing anothetafgle, the behavior class controls
the deformations class through the physics class.

input an image and producing as output a segmented image). More detaiis derthed class are provided
athttp:/iwww.sfu.ca/ ~ cmcintos/IDO/doxygen/html/classmial_1 1 organism.ht ml.

2.2 Control Center

The control center is designed to handle all “intelligent” aspects of thenmga It has associated behaviors
and sensory modules, and provides the organism with its ability to make dec{sign next behavior to
run, image data to sense, etc.). It monitors the status of the behavionsndetms, and sensors, then makes
decisions based upon their states and outputs.

Consequently, this class exploits much of the complex versatility of the frarkeslidained through the
use of ABCs, streams, and structures. Through a single list of semsdrisehaviors, the cognitive center
can perform a variety of actions on any defined geometrical or physipal regardless of the varying
input requirements they may have. For example, the decision to “translatdtiggler a spatial translation
behavior, which will in turn trigger the appropriate translate deformation aeriains to the particular
physical layer of the model. All without the cognitive layer having any rédar which derived physical
layer and deformation class, or geometrical layer and shape repiiseigdoeing called.

The control center accomplishes this by using a “run-by-name” desigroohatigy, where once it decides
upon (or is asked to run) a particular named behavior it will search its list@ivn behaviors for one with
the matching name.

By calling a control center'd/pdate method the organism will conceptually cause the control center to
do its thinking. If no current behavior exists it will decide on one (via theved classes provided
DecideNextBehavior ~ method). Otherwise, it will check the status of the behavior (vidskmished
method), then clean uiCleanUp method) and decide on a new behavior if it has finished, or update it

http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_organism.html

2.3 Sensor 6

(Update method) if it has not.

http://www.sfu.ca/ ~ cmcintos/IDO/doxygen/html/classmial_1 1 control_cen ter.html

2.3 Sensor

Organisms perceive their surroundings through sensory moduleg pftxde a means by which to gather
statistics and characteristics of its own geometry and the world (image data)dh ivhesides. At any
given time a decision function may possess many different sensory qlgeacts of which can report back
different sensory information (e.g. gray level intensity, gradient madaiand direction, texture features,
etc). It is important to note that some sensors will be implementation dependelet others will not. For
example, it makes no sense to run a vasculature bifurcation sensory madutgous callosum organism
because the latter is only 2D and has a completely different topology aedi@pe characteristics.

In order to run a sensor one must use its publicly defisemdorln andsensorOut types to create the
input arguments and receive the output. This allows maximum flexibility in thenpeieas a sensor can
have, while still enabling any sensor to be ran abstractly. Through thibiflgxusers can setup and run
complex pipelines of ITK filters within the sensors, while passing their varietyput requirements in via
the sensorlin type.

http://www.sfu.ca/ ~ cmcintos/IDO/doxygen/html/classmial_1 1 sensor.html

2.4 Behavior

Behaviors are basically actions, or sequences of actions. As suthyelavior has a name, a state, a pointer
to the physical layer, and multiple sub-behaviors, and deformations. Stoc&meaningful interaction with
other organisms and users each behavior has a name. So for exarsplée thee action “running” being
carried out differently by different animals each can always be toldripaureport that it is running. Upon
being executed the behavior simply begins executing its main body. Againekfazibr class is simply an
ABC. So let’s consider a few example derived classes to illustrate the subtiétigs class.

The first simple example behavior is ‘inflate for 30 cycles’. The act of thamism inflating itself is physics
system dependant, so the behavior runs its associated inflate deformatiahity therunDeformation
method of the physics object. The behavior then sets its status to incomplete.e Aexhrun of its
decideNextBehavor ~ method the control center checks the status of the inflate behavior, andsepe

ing incomplete runs the behavior'spdate method. Now upon executing, the behavior checks to see if
its ran for 30 cycles by examining the physics objects time counter, if so it setfatiss tocomplete .
Now suppose a more complex behavior inflates then moves forward. Fussitts inflate sub-behavior by
checking its list of behaviors for one with a matching name, then checks its stipon confirming that its
first sub-behavior is complete it moves forward, and sets its own statosipiete .

It is also possible for thdecideNextBehavior method to use a decision function to decide that a given
behavior is finished executing, regardless of its current status. @eoabehavior may also fail, resulting
in some action by the control center.

Sub-behaviors are smaller behaviors performed as part of a latg@n.athis enables significant levels of
abstraction, allowing users to issue single commands and carry out dasb@aplex sequences of actions,
or small exact ones. For example, one could instruct the organism to sinfilalejror one could tell it to
segment which includes inflatio2][

http://www.sfu.ca/ ~ cmcintos/IDO/doxygen/html/classmial_1_1 behavior.ht mi

http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_control_center.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_sensor.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_behavior.html

2.5 Physics 7

2.5 Physics

The Physics layer is responsible for simulating the deformations and handling the orgamigenaction
with its environment through external forces. Each physics objecepess a list of executable deformations
and a geometric object. The main public interface of interest is the simulate methict, actually causes
forces to be calculated and exerted. Again, as the physics layer is me®B@, it is of much more interest
to discuss this class through an example of one of its derived classes.

An example derived class is tidys _Euler physics object. This implementation relies on the simulation
of a spring-mass system to perform deformations. When the organismtlualsmulation method, the
Phys _Euler object runs its simulation cycle for a set number of times, and then incremenggotie
timer. During the simulation cycle the physics layer has control of the CPUgandot be interrupted.
Consequently, the length of this cycle should be kept short in order to gil®wrganism to check behavior
status states, run decision functions, etc. If the length of the cycle is loreyettie time required to run a
single behavior, then the organism will basically be idle for the remaining iteiatidowever, the running
deformation also has a runtime set by its calling behavior. So the physicd objestop simulating after
that runtime has expired.

http://www.sfu.ca/ ~ cmceintos/IDO/doxygen/html/classmial_1_1_physics.htm I

2.6 Deformations

The Deformation classes manipulate the geometry of the organism. For example, in a physasdig-b
spring-mass implementation deformations move nodes, actuate springs,@pply, and basically deform
the geometrical model. Much like behaviors, each deformation has aniassostatus and runtime, as
well as run method for its public interface. However, in this case deformatiomot posses many sub-
deformations.

As an example let us consider the inflate deformation. Upon being execytad dssociated behavior it
begins applying forces normal to the model's surface, causing it to inflat¢he case of a spring-mass
system these forces may be carried out by applying forces on individdies, or by increasing the rest-
lengths of springs. The concept of reversing the inflation to a deflatioa thre organism has passed from
dark to bright (for example when segmenting dark object on a white backd) is delegated to the control
center of the organism, and does not take place here. Instead onlyJeldsks like actuating springs,
moving nodes, etc are carried out. This enables the execution of bothapddearned deformation8][
where learned deformations are carried out by the associated leain@ddr causing a sequence of spring
actuations. However, if the underlying shape representation is levebastsl the inflation takes the form
of adding a constant to the embedding function in order to expand thdeaaicset.

2.7 Geometric

The Geometric object houses the the actual topology of the organism. It handles addihgemoving
nodes, as well as reading and writing the meshes to file. Consider twecedifiexample derived classes: the
VectorGeometry class and the TubularGeometry class. The VectorGearteestsyis implemented entirely
with vector geometry, while the TubularGeometry class is also derived froiifla spatialobjects class.
Both classes provide the same public interface in terms of getting nodes, seitliag, writing to file,
reading from file, etc. However, they each allow the user to take advanfabeir inherit properties. So the
user can write a custom sensory class, that uses the additional fuigtioh#éhe TubularGeometry class

http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_physics.html

without having to modify any internal code of the organism itself. In essethe user can be dependent on
the implementation when they want to be, and remain totaly independent in ottegrosisuby sticking to
theGeometric base class interface.

3 Conclusions

We have developed a powerful new framework for medical image segtiventnd analysis that offers
both great flexibility and rigid design enforcement, thereby, ensuring mamineusability, portability and
sustainability. Our framework makes use of many powerful features initkiding filters, meshes, file
10, and spatial objects. We have also created a robust spring-masigallyybased deformations layer,
which can be seen as a contribution in itself. With the geometrical layr#g/imageToMesh func-
tionality, one can easily create deformable models and deform them usirgpong-mass deformation
system or our level-set implementation. Furthermore, the added ability to rtdBV& surfaces into
itk::MeshSpatialObjects and consequently, into deformable organisms should prove a usefalltmel
ing level-set refinement, or physics-based interaction with segmentatigdtsrekvarious existing projects.

4 Acknowledgements

We would like to thank Andy Rova for his development of the PhyesvelSet class, Vincent Chu for his
role as lead developer of the KWWidgets viewer application (se@jomand Aaron Ward for his technical
expertise and discussions on fundamental framework design choices.

A Requirements

Though the framework itself only requires ITK 2.4 or greater, building ttoided viewer (sectiol), has
additional requirements:

e VTK 5.0.0http://www.vtk.org
e SOViewer (Feb 8, 2008jttp://www.vtk.org/Wiki/SOViewer
o KWWidgets (Feb 8, 2008)ttp://www.kwwidgets.org/Wiki/KWWidgets

B Examples

B.1 Layer Examples

Various examples of the layers/modules explained in se@iare available, with details provided in the
frameworks online documentation.

e Geom MeshSpatialObjeetdType,nDims, MType, VType
http:/www.sfu.ca/ ~ cmceintos/IDO/doxygen/html/classmial_1 1 geom__ mesh _spatial_object.html

http://www.itk.org/Doxygen/html/classitk_1_1MeshSpatialObjects.html
http://www.vtk.org
http://www.vtk.org/Wiki/SOViewer
http://www.kwwidgets.org/Wiki/KWWidgets
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_geom___mesh_spatial_object.html

B.2 Deformable Organism Examples 9

e Phys EulerDataType, TGradientimage,nDims,MType,VType
http:/www.sfu.ca/ ~ cmceintos/IDO/doxygen/html/classmial_1 1 phys eule r.html

e Phys LevelSekDataType,InputimageType,nDims,MType,VType
http:/www.sfu.ca/ ~ cmceintos/IDO/doxygen/htmi/classmial_1 1 phys leve |_set.html

e Beh TranslateAlk Type,nDims>
http://www.sfu.ca/ ~ cmceintos/IDO/doxygen/html/classmial_1 1 beh trans late_all.html

e Beh _UniformScale<Type,nDims>
http:/www.sfu.ca/ ~ cmceintos/IDO/doxygen/html/classmial_1 1 beh_ unifo rm_scale.html

e Beh _SearchForObjeetType, TInputimage,nDims
http://www.sfu.ca/ ~ cmceintos/IDO/doxygen/html/classmial_1 1 beh searc h_for_object.html

e Def_TranslateAlk Type,nDims>
http://www.sfu.ca/ ~ cmceintos/IDO/doxygen/html/classmial_1 1 def trans late_all.html

e Def_UniformScale<Type,nDims>
http://www.sfu.ca/ ~ cmcintos/IDO/doxygen/html/classmial_1 1 def unifo rm_scale.html

e Ctrl_ScheduleDriverclass Type, int nDims
http://www.sfu.ca/ ~ cmcintos/IDO/doxygen/html/classmial_1 1 ctrl _ sche dule_driven.html

e SenseGradienkDataType, TIinputimage, TGradientimage, nDims
http://www.sfu.ca/ ~ cmcintos/IDO/doxygen/html/classmial_1 1 sense_ gra dient.html

B.2 Deformable Organism Examples

There are numerous example DOs included with the framework.

e itkOrganism<ImageType, ImageType, Gradientl mageType, dType, nDims> A derived organism
based on atk::ImageTolmageFilter that contains no default layers.

e Org_LevelSetSchedule<ImageType, ImageType, GradientimageType, dType, nDims> A
geodesic active contourg][based DO that uses a schedule driven cognitive layer.

e Org_EulerSchedule<ImageType, ImageType, GradientlmageType, dType, nDims> A 3D
spring-mass{] based DO that uses a schedule driven cognitive layer.

C The Visual Interface to I-DO

We have also developed a graphical user interface to the I-DO frarkgethat allows its users to visualize
the geometry of created DOs as well as observe their deformations in realttgives the user the ability to
load DOs as dll files, while allowing the developer to define customized inesxfaa theDefOrgAdapter

class. The GUI is based on, and therefore requires, KWWidegets, ¥tk SOViewer. Future versions

http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_phys___euler.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_phys___level_set.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_beh___translate_all.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_beh___uniform_scale.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_beh___search_for_object.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_def___translate_all.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_def___uniform_scale.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_ctrl___schedule_driven.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_sense___gradient.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageFilter.html

10

will facilitate interaction with DOs through mouse click driven forces, andsfibg other forms of input.
Complete documentation of the viewer will be made available at a later date, bytdegils reside in its
doxygen.

http://lwww.sfu.ca/ ~ cmcintos/IDO/doxygen/html/classmial_1 1 def org_vie wer_adapter_base.html

D Guide to users

This section provides information to those who wish to use, or contribute toahesfvork.

Hello I-DO

In this section we present a simple “Hello [I-DO] World” example that prosidetep by step guide to how
a new user can build and run a simple DO.

1. Download and compile ITK 2.4 or greater (seew.itk.org).

2. Download [ittp://mial.fas.sfu.ca/researchProject.php?s=157) and configure the I-DO
framework using CMakewivw.cmake.org) and the CMakelLists.txt file found in the root-most di-
rectory. Make sure to leave "Build Examples” set to "ON”.

3. Compile the created project. This will build the I-DO library, and two exdalata

4. Run YourBuildDirectory/examples/basic/defQlmasic from command line, providing input and out-
put image names, a schedule name, and a mesh name. (e.g. cube.mhd out.nSuthedilde3d.txt
cubeMesh3d.meta)

5. The DO will run, and output a final binary image using the file name provide
Users can follow these procedures for any of the provided examples axdimples directory.

e Basic - The same example as shown in “Building A Deformable Organism”. Agigally-based DO
using a schedule driven cognitive layer along with a few example belseavim deformations.

e Advanced - A multi-organism application that uses two pre-made DOs in Begue
Org _EulerSchedule begins the segmentation process and initiales_LevelSetSchedule with
its output, which then proceeds to refine the segmentation results beforegywrtito file.

Building A Deformable Organism

This example walks the reader through creating a DO by individualy instargfiatid attaching the layers.
This is contrast to using an already created DO, which can be instantiated, and used just like any ITK
filter.

The first step is to choose and instantiate a DO shell (one having no builtars)aysing the standard ITK

itk::SmartPointer approach. In this case the DO is an ITikk::ImageTolmageFilter , and must be
provided with an input image via tt&etinput method.

http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_def_org_viewer_adapter_base.html
www.itk.org
http://mial.fas.sfu.ca/researchProject.php?s=157
www.cmake.org
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageFilter.html

11

typedef itk::ltkOrganism <ImageType, ImageType, Gradien timageType, float, 3> organismType;
organismType::Pointer testOrg = organismType::New();

std::cout << "Organism created..." << std:endl;

testOrg->Setinput(reader->GetOutput());

Next we will instantiate a sensor to calculate the gradient information used eternal force during the
deformation simulations by thhysics layer.

typedef Sense_Gradient<float,ImageType,Gradientimage Type,3> gradientSensorType;
gradientSensorType::Pointer gradientSensor = gradientS ensorType::New();

The sensor requires its publicly defingmhsorln ~ as input. Here we create a pointer to the class, and set its
values. This allows all sensors to be ran from a commonmethod, with their own customized input.

gradientSensorType::sensorin::Pointer input = gradient SensorType::sensorin::New();
input->sigma = 1.0;

reader->Update();

input->imageln = reader->GetOutput();

The gradient sensor can then be ran. Note that at this $ensors themselves do not fit into the ITK
pipeline, and thus the readetipdate() method must be called prior to running the sensor.

gradientSensor->run(input);
Finally, its output can be obtained by constructingeasorOut itk::SmartPointer and providing the
appropriate downcast on the pointer returned bygtt@utput method.

gradientSensorType::sensorOut::Pointer output = (gradi entSensorType::sensorOut *) (gradientSensor->getOutpu

Next create th@hysics andGeometrical layers. Notice that the type of external force image is provided
as an input type to thehysics layer.

typedef Phys_Euler<float,GradientimageType,3> PhysLay erType;
typedef Geom_MeshSpatialObject<float,3> GeometricType ;
PhysLayerType::Pointer physLayer = PhysLayerType::New();
GeometricType::Pointer geomLayer = GeometricType::New();

Then set thePhysics layer to use the external force image calculated by the gradient sengdhen
newly constructedseometrical layer, and setup the topology of tl@eometric layer (in this case an
ITK itk::MeshSpatialObject). Finally, attach both to th@rganism .

physLayer->setExternalForces((void *) &(output->image Oout));
physLayer->setGeometry(geomLayer);
std::cout << "External forces set." << std:.endl;

geomLayer->readTopologyFromFile(topologylnputFileNa me);
std::cout << "Topology read from ™ << topologylnputFileNa me << ".." << std::endl;

testOrg->setPhysicsLayer(physLayer);
testOrg->setGeometricLayer(geomLayer);
std::cout << "Physics and Geometric layers added..." << std zendl;

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
http://www.itk.org/Doxygen/html/classitk_1_1MeshSpatialObject.html

12

Create &Cogntive layer, set its appropriate options, and attach it to the DO. In this case iteqlyres a
Schedule text file (e.g. eulerSchedule3D.txt).

Ctrl_ScheduleDriven<float, 3>::Pointer cgL = Ctrl_Sched uleDriven<float, 3>::New();
cgL->setSchedule(scheduleFileName);
testOrg->setCognitiveLayer(cgL);

Now begin creating and attaching simple behaviors, and deformations. Niie tase, the behaviors and
deformations do not require any additional parameters or settings.

Beh_TranslateAll<float, 3>::Pointer behl = Beh_Translat eAll<float,3>::New();
Beh_UniformScale<float, 3>::Pointer beh2 = Beh_UniformS cale<float,3>::New();
Def_Translation<float, 3>::Pointer defl = Def Translati on<float,3>::New();
Def_UniformScale<float, 3>::Pointer def2 = Def UniformS cale<float,3>::New();

testOrg->addBehaviour(behl);
testOrg->addBehaviour(beh2);
testOrg->addDeformation(defl);
testOrg->addDeformation(def2);

Attach a more advanced behavior and set its additional parameters. lragaistmeeds an image and a
Geometric pointer for its internabense _Avgintensity ~ sensor.

Beh_SearchForObject<float,imageType,3>::Pointer beh3 = Beh_SearchForObject<float,ImageType,3>::New();
beh3->image = reader->GetOutput();

beh3->geomlLayer = geomLayer;

testOrg->addBehaviour(beh3);

The Organism is ready to run. CallingJpdate() on the writer will cause the DO to simulate for a set
amount of DO time. Here we set the DOrtm for 25 iterations with a singl&pdate()

testOrg->setRunTime(120);
writer->Setlnput(testOrg->GetOutput());

try
{
writer->Update();
}
catch(itk::ExceptionObject & err)
{
std::cout << "ExceptionObject caught!" << std::endl;
std::cout << err << std:endl;
return -1;
1

Finally, in addition to the binary output available on the writer the DO’s mesh eamrliten back to file.

testOrg->writeNodesToFile(nodeOutputFileName);
std::cout << "Nodes written to ™ << nodeOutputFileName << " " << std:endl;

References 13

Extending Existing DOs

Extending existing organisms is as easy as followingBhéding A Deformable Organisraxample and
attaching additional layers.

Creating New DOs and Layers

Detailed information about creating new DOs and layers will be included in tiuisrdent in a later revision.
In the mean time, interested users are referred to the doxygen documentaitthroutlines how each pure
virtual function of the ABCs should be defined in a derived class. We Jgth @rovide skeleton code
generators, that will give those wishing to create new layers a “fill in thekislaoption.

http://lwww.sfu.ca/ ~ cmcintos/IDO/doxygen/html/index.html

References

[1] Vincent Caselles, Ron Kimmel, and Guillermo Sapiro. Geodesic activeouo InICCV, pages
694-699, 1995B.2

[2] Laurent D. Cohen. On active contour models and ballod2¢GIP: Image Underst53(2):211-218,
1991.2.4

[3] Ghassan Hamarneh, Tim Mclnerney, and Demetri Terzopoulogoridable organisms for automatic
medical image analysis. MICCAI, pages 66—76, 2001

[4] Ghassan Hamarneh and Chris McIntosh. Physics-based deflerprgbanisms for medical image anal-
ysis. SPIE Medical Imaging5747:326—335, 2005L

[5] G. Hamarnerh and C. McintoshParametric and Geometric Deformable Models: An application in
Biomaterials and Medical Imagerghapter 12: Deformable Organisms for Medical Image Analysis.
Springer Publishers, 1 edition, 2006.

[6] C. McIntosh and G. Hamarnerh. Spinal crawlers: Deformablerasgas for spinal cord segmentation
and analysisMICCAI, 2006.1

[7] C. McIntosh and G. Hamarnerh. Vessel crawlers: 3d physicalseld deformable organisms for vasu-
lature segmentation and analydiSEE Conference on Computer Vision and Pattern Recognifioa6.
1,1,B.2

[8] D. Terzopoulos, X. Tu, and R. Grzeszczuk. Artificial fishes:t@nomous locomotion, perception,
behavior, and learning in a simulated physical woAdtificial Life, 1(4):327-351, 19942.6

http://www.sfu.ca/~cmcintos/IDO/doxygen/html/index.html

I-DO: A “Deformable Organisms” framework for
ITK

Release 0.50
Chris Mclntosh and Ghassan Hamarneh

July 23, 2006

Medical Image Analysis Lab

School of Computing Science, Simon Fraser University
Burnaby, BC, Canada
{cmcintos,hamarnél@cs.sfu.ca

Abstract

Medical image analysis is an important problem relatinght® $tudy of various diseases. Since their
introduction to MICCAI in 2001, "deformable organisms” lee@merged as a fruitful methodology with
examples ranging from 2D corpus callosum segmentation toé@ulature and spinal cord segmen-
tation. Essentially we previously have developed an adifiife framework that complements the
geometrical and physical layers of classical deformabléetso(snakes and deformable meshes) with
high-level behavioral and cognitive layers that facigtahatomically-driven control mechanisms. This
paper describes the integration of deformable organistoghie Insight Toolkit (ITK)www.itk.org . In
our proposed implementation we attempt to bridge the ITkh&aork and coding style with deformable
organism design methodologies. In the interest of opemsejeas the framework develops it will serve
as a basis for the community to develop new deformable osganias well as experiment with those
recently published by our group. Further, as the design @fiTiK Deformable Organisms (I-DO) is
highly modular, researchers and developers can exchamgeorents (spatial objects, dynamic simula-
tion engines, image sensors, etc) allowing in the futurddst development of new custom deformable
organisms for different clinical applications.

Contents

1 Introduction 2
1.1 ITK Deformable Organisms: Motivation and Introduction 4
1.2 DOsRequirements e 4

2 Implementation 4
2.1 Organism. e 4
2.2 ControlCenter e 5
2.3 SENSOL . . . e e e e 6
2.4 Behavior e 6
25 PhysiCS 7
2.6 Deformations. e 7

2.7 GEOMELNIC e e 7

www.itk.org

3 Conclusions 8

4 Acknowledgements 8

A Requirements 8

B Examples 8
B.1 LayerExamples e e 8
B.2 Deformable Organism Examples. 9

C TheVisual Interfaceto1-DO 10

D Guidetousers 10
Hello I-DO e 10
Building A Deformable Organism. 11
Extending Existing DOS e 13
CreatingNew DOsand Layers. it e e 13

1 Introduction

In medical image analysis strategies based on deformable models, contradlidgftinmations of the mod-
els is a desirable goal to produce proper segmentations. Incorporapeg &nowledge to automatically
guide deformations cannot be easily and elegantly achieved using thecalateformable model low-
level energy-based fitting mechanisms. Deformable Organisms (DOSs), ggeision-making framework
for medical image analysis that complements bottom-up, data-driven deflermalolels with top-down,
knowledge-driven mode-fitting strategies in a layered fashion inspirettiicial life modeling concepts.
Intuitive and controlled deformations are carried out through behavassory input from image data and
contextual knowledge about the analysis problem govern these difteegaviors.

Since their introduction in 20013], various DOs-based approaches for medical image analysis hane bee
developed (Figurd). In this original work, a variety of DOs where demonstrated with applicattorio-
cating the lateral ventricles, caudate nuclei, and putamina structures iversaisrain magnetic resonance
image (MRI) slices, as well as DOs for the segmentation of vessels in 2Dgaaghyy. In], DOs were
augmented to include physically-based and controlled deformations deatorgsan application to corpus
callosum segmentation in mid-sagittal magnetic resonance images (MRI).tiReDéds were extended to
3D and applied to vascular segmentation and analysis. The so called ‘wesslers’ were equipped with
sensors, decision modules, and deformation layers suited for vaseu[dturAn extension of that work
introduces DOs for spinal cord segmentation and analysis and demaomgteatbility to efficiently replace
modules of existing DOs to create new solutions. The ‘spinal crawlers’ngeloppossessed a decision mod-
ule to detect branching and their sensors were adapted to detect elliptisalsectionsd]. In each case
DOs have demonstrated their key advantages over other leading technidamely, their ability to pro-
duce increased accuracy, allow intuitive user-interaction to contramair the segmentation where other
methods would require being restarted with some type of parameter adjustawdlitgté greater analysis
and labeling abilities than those methods producing binary outputs, the rb#gitly ta incorporate image
or shape-based prior-knowledge, and a modular framework allowimgdorporating new sensors (image
filters), decision models, shape representations, and deformation risgnkan

Figure 1: An assortment of deformable organisms showing(left to right, top to bottom): Physically-
based corpus callosum, Geometrically-based corpus callosum, Putamina and ventricle organisms, 2D An-
giography, 3D ‘spinal crawler’, and 3D ‘vessel crawler' Related images and videos can be found at
http://mial.fas.sfu.ca/researchProject.php?s=157

Though a summary is provided here, a complete research-oriented ID@satan be found irg]. DOs are
built following a multilevel AL modelling approach consisting of four primary lesie&ognitive, behavioral,
physical, and geometrical. Specifically, the cognitive layer makes decisions based on the DOsitstate,
anatomical knowledge, and its surrounding environment (the image). iBexisould be made to sense
information, to deform based on sensory data, to illicit help from the uséw, terminate the segmentation
process. All of these actions are described under the behavioraldbffee organism, and they rely upon
both the physical and geometrical layers for implementation. For example, iotiiext of our ‘vessel
crawlers’ [7], the act of moving towards a sensed target location is described Bygrtweing’ behavioral
method. The cognitive center gathers sensory input usintgémse-to-growsensory module, decides the
correct location via thévhere-to-grow’decision module, elicits the act @frowing’ , and then conforms
to the vascular walls btfitting’. In turn, each of these methods relies upon the physical and geometrical
layers to carry out tasks, such as maintaining model stability. Consequestlyave a framework with
many independent layers of abstraction, each built upon the implementatmaependent modules and or
processes.

We begin with a motivation of our ITK-Deformable Organisms (I-DO) framdwio sectionl.l, and a
discussion of the general requirements of DOs that the framework istsetimeet inl.2 Sections2.1-2.7)
provide an overview of how each layer is designed and implemented in thevirark. We summarize in
section3. The appendices provide the most information on using the framework wattarements listing

http://mial.fas.sfu.ca/researchProject.php?s=157

1.1 ITK Deformable Organisms: Motivation and Introduction 4

(sectionA), examples of layers and organisms (secByna description of our visual interface (sectioh
a guide to building and running your first organism (sect@n and information on extending organisms
and the framework (sectidn).

1.1 ITK Deformable Organisms: Motivation and Introduction

Previously, the major drawback of DOs has been their restriction to a etkmsede MATLAB framework.
Though straightforward and intuitive in design they are not readily exigledby the general medical im-
age analysis community in this form. ITK, however, enjoys a large user draexemplifies the notion
of an open-source, adoptable, and extendable framework. Furtreerthe incorporation of ITK grants
DOs access to faster processing, multi-threading, additional image pimgédsnctions and libraries, and
straightforward compatibility with the powerful visualization capabilities of thaiglization Toolkit (VTK)
www.vtk.org

1.2 DOs Requirements

DOs are constructed through the realization of many abstract and irdkyieconcepts/layers (cognitive,
behavioral, physical, geometrical, sensors). As such, a DO framewask reflect this modular design by
allowing users to replace one implementation (layer) for another. For exanmgeshape representations
should be introducible without re-designing existing cognitive layers. ®aédhd, the interface between
layers must be consistent across implementations (plug and play), arlg diefared.

The framework must also be extendable, allowing it to grow and advaribe asncept of DOs does. That
is to say, it should support current research into new types of DQgrakfor different applications, with
increasingly advanced decision making and deformation abilities.

2 Implementation

This section provides details on the implementation of the I-DO framework. gstton 2.1-2.7) describes
a DO layer in detail within the context of our I-DO framework. A high leve¢oxiew of the DOs framework
is shown in Figure.

2.1 Organism

The organism is the abstract base class (ABC) that acts as a container for most oatheviork. Each
organism posses its world, a control center, a physics layer, anchaeggeal layer. It provides public inter-
faces through which users can add deformations and behaviorsll as atach the cognitive, physical, and
geometrical layers. Its important to understand that as an ABC, the omyaldss itself is not instantiated.
It is designed as such so that no matter the derivation (type of organi€h@),application can simply call
its associated public interface. Consequently, of most interest are thiedlelasses themselves.

TheitkOrganism derived class can be instantiated and used as a fully functional orgaisam be used
as a base class of another more specialized organism. It inherits fronthieoBirganism ABC, and ITK’s
ImageTolmageFilter class. Though many other classes could be usedhapeTolmageFilter class allows
these particular DOs to be incorporated as autonomous tools in existing ITn{ltgipelines (taking as

www.vtk.org

2.2 Control Center 5

) // Organism\ \

Control Center Physics

—> Decisions I Geometric I

User < »> ﬂ'

Sensors]—b[Behaviors]l Deformations

a8

a

~\

Environment

\\ /;_/j
[

Figure 2: The basic outline of the deformable organism framework. Dadwa represent directions of
communication between objects, while hollow arrows represent one clasgguanother’s publigun
method, and encapsulation represents one class containing anothetafgle, the behavior class controls
the deformations class through the physics class.

input an image and producing as output a segmented image). More detaiis derthed class are provided
athttp:/iwww.sfu.ca/ ~ cmcintos/IDO/doxygen/html/classmial_1 1 organism.ht ml.

2.2 Control Center

The control center is designed to handle all “intelligent” aspects of thenmga It has associated behaviors
and sensory modules, and provides the organism with its ability to make dec{sign next behavior to
run, image data to sense, etc.). It monitors the status of the behavionsndetms, and sensors, then makes
decisions based upon their states and outputs.

Consequently, this class exploits much of the complex versatility of the frarkeslidained through the
use of ABCs, streams, and structures. Through a single list of semsdrisehaviors, the cognitive center
can perform a variety of actions on any defined geometrical or physipal regardless of the varying
input requirements they may have. For example, the decision to “translatdtiggler a spatial translation
behavior, which will in turn trigger the appropriate translate deformation aeriains to the particular
physical layer of the model. All without the cognitive layer having any rédar which derived physical
layer and deformation class, or geometrical layer and shape repiiseigdoeing called.

The control center accomplishes this by using a “run-by-name” desigroohatigy, where once it decides
upon (or is asked to run) a particular named behavior it will search its list@ivn behaviors for one with
the matching name.

By calling a control center'd/pdate method the organism will conceptually cause the control center to
do its thinking. If no current behavior exists it will decide on one (via theved classes provided
DecideNextBehavior ~ method). Otherwise, it will check the status of the behavior (vidskmished
method), then clean uiCleanUp method) and decide on a new behavior if it has finished, or update it

http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_organism.html

2.3 Sensor 6

(Update method) if it has not.

http://www.sfu.ca/ ~ cmcintos/IDO/doxygen/html/classmial_1 1 control_cen ter.html

2.3 Sensor

Organisms perceive their surroundings through sensory moduleg pftxde a means by which to gather
statistics and characteristics of its own geometry and the world (image data)dh ivhesides. At any
given time a decision function may possess many different sensory qlgeacts of which can report back
different sensory information (e.g. gray level intensity, gradient madaiand direction, texture features,
etc). It is important to note that some sensors will be implementation dependelet others will not. For
example, it makes no sense to run a vasculature bifurcation sensory madutgous callosum organism
because the latter is only 2D and has a completely different topology aedi@pe characteristics.

In order to run a sensor one must use its publicly defisemdorln andsensorOut types to create the
input arguments and receive the output. This allows maximum flexibility in thenpeieas a sensor can
have, while still enabling any sensor to be ran abstractly. Through thibiflgxusers can setup and run
complex pipelines of ITK filters within the sensors, while passing their varietyput requirements in via
the sensorlin type.

http://www.sfu.ca/ ~ cmcintos/IDO/doxygen/html/classmial_1 1 sensor.html

2.4 Behavior

Behaviors are basically actions, or sequences of actions. As suthyelavior has a name, a state, a pointer
to the physical layer, and multiple sub-behaviors, and deformations. Stoc&meaningful interaction with
other organisms and users each behavior has a name. So for exarsplée thee action “running” being
carried out differently by different animals each can always be toldripaureport that it is running. Upon
being executed the behavior simply begins executing its main body. Againekfazibr class is simply an
ABC. So let’s consider a few example derived classes to illustrate the subtiétigs class.

The first simple example behavior is ‘inflate for 30 cycles’. The act of thamism inflating itself is physics
system dependant, so the behavior runs its associated inflate deformatiahity therunDeformation
method of the physics object. The behavior then sets its status to incomplete.e Aexhrun of its
decideNextBehavor ~ method the control center checks the status of the inflate behavior, andsepe

ing incomplete runs the behavior'spdate method. Now upon executing, the behavior checks to see if
its ran for 30 cycles by examining the physics objects time counter, if so it setfatiss tocomplete .
Now suppose a more complex behavior inflates then moves forward. Fussitts inflate sub-behavior by
checking its list of behaviors for one with a matching name, then checks its stipon confirming that its
first sub-behavior is complete it moves forward, and sets its own statosipiete .

It is also possible for thdecideNextBehavior method to use a decision function to decide that a given
behavior is finished executing, regardless of its current status. @eoabehavior may also fail, resulting
in some action by the control center.

Sub-behaviors are smaller behaviors performed as part of a latg@n.athis enables significant levels of
abstraction, allowing users to issue single commands and carry out dasb@aplex sequences of actions,
or small exact ones. For example, one could instruct the organism to sinfilalejror one could tell it to
segment which includes inflatio2][

http://www.sfu.ca/ ~ cmcintos/IDO/doxygen/html/classmial_1_1 behavior.ht mi

http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_control_center.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_sensor.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_behavior.html

2.5 Physics 7

2.5 Physics

The Physics layer is responsible for simulating the deformations and handling the orgamigenaction
with its environment through external forces. Each physics objecepess a list of executable deformations
and a geometric object. The main public interface of interest is the simulate methict, actually causes
forces to be calculated and exerted. Again, as the physics layer is me®B@, it is of much more interest
to discuss this class through an example of one of its derived classes.

An example derived class is tidys _Euler physics object. This implementation relies on the simulation
of a spring-mass system to perform deformations. When the organismtlualsmulation method, the
Phys _Euler object runs its simulation cycle for a set number of times, and then incremenggotie
timer. During the simulation cycle the physics layer has control of the CPUgandot be interrupted.
Consequently, the length of this cycle should be kept short in order to gil®wrganism to check behavior
status states, run decision functions, etc. If the length of the cycle is loreyettie time required to run a
single behavior, then the organism will basically be idle for the remaining iteiatidowever, the running
deformation also has a runtime set by its calling behavior. So the physicd objestop simulating after
that runtime has expired.

http://www.sfu.ca/ ~ cmceintos/IDO/doxygen/html/classmial_1_1_physics.htm I

2.6 Deformations

The Deformation classes manipulate the geometry of the organism. For example, in a physasdig-b
spring-mass implementation deformations move nodes, actuate springs,@pply, and basically deform
the geometrical model. Much like behaviors, each deformation has aniassostatus and runtime, as
well as run method for its public interface. However, in this case deformatiomot posses many sub-
deformations.

As an example let us consider the inflate deformation. Upon being execytad dssociated behavior it
begins applying forces normal to the model's surface, causing it to inflat¢he case of a spring-mass
system these forces may be carried out by applying forces on individdies, or by increasing the rest-
lengths of springs. The concept of reversing the inflation to a deflatioa thre organism has passed from
dark to bright (for example when segmenting dark object on a white backd) is delegated to the control
center of the organism, and does not take place here. Instead onlyJeldsks like actuating springs,
moving nodes, etc are carried out. This enables the execution of bothapddearned deformation8][
where learned deformations are carried out by the associated leain@ddr causing a sequence of spring
actuations. However, if the underlying shape representation is levebastsl the inflation takes the form
of adding a constant to the embedding function in order to expand thdeaaicset.

2.7 Geometric

The Geometric object houses the the actual topology of the organism. It handles addihgemoving

nodes, as well as reading and writing the meshes to file. Consider tweediffeypothetical derived classes:
a VectorGeometry class and a TubularGeometry class. The VectorGearfastsywould be implemented
entirely with vector geometry, while the TubularGeometry class would alseetefiom an ITK spatialob-

jects class. Both classes would provide the same public interface in termtinfgedes, setting nodes,
writing to file, reading from file, etc. However, they each would allow ther ticéake advantage of their
inherit properties. So the user can write a custom sensory class, gsahaesadditional functionality of the

http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_physics.html

TubularGeometry class without having to modify any internal code of thanisq itself. In essence, the
user can be dependent on the implementation when they want to be, and tefalgimdependent in other
situations by sticking to théeometric base class interface.

3 Conclusions

We have developed a powerful new framework for medical image segtiengand analysis that offers
both great flexibility and rigid design enforcement, thereby, ensuring mamwineusability, portability and
sustainability. Our framework makes use of many powerful features inckiding filters, meshes, file 10,
smart pointers, and spatial objects. We have also created a robugts@ss physically-based deformation
layer, which can be seen as a contribution in itself.

Furthermore, the added ability to convert BYU surfaces or binary volumeso
itk::MeshSpatialObjects and consequently, into deformable organisms should prove a useful
tool allowing level-set refinement, or physics-based interaction with segi@m results of various
existing projects. For example, both explicit physically based (spring naask)mplicit level set based
classical deformable models are special cases of DOs and their implemeigatispecial case of the
IDO framework. They now simply emerge in IDO by setting the proper geona¢ticd physical layers
(spring mass vs level set) and having behavioral and cognitive layatrsithply simulate the deformation
dynamics without any top down control or scheduling.

4 Acknowledgements

We would like to thank Andy Rova for his development of the PHyesvelSet class, Vincent Chu for his
role as lead developer of the KWWidgets viewer application (se@jomnd Aaron Ward for his technical
expertise and discussions on fundamental framework design choices.

A Requirements

Though the framework itself only requires ITK 2.4 or greater, building tleeided viewer (sectio), has
additional requirements:

e VTK 5.0.0http://www.vtk.org
e SOViewer (Feb 8, 2008jttp:/www.vtk.org/Wiki/SOViewer
e KWWidgets (Feb 8, 200&)ttp://www.kwwidgets.org/Wiki/KWWidgets

B Examples

B.1 Layer Examples

Various examples of the layers/modules explained in se@iare available, with details provided in the
frameworks online documentation.

http://www.itk.org/Doxygen/html/classitk_1_1MeshSpatialObjects.html
http://www.vtk.org
http://www.vtk.org/Wiki/SOViewer
http://www.kwwidgets.org/Wiki/KWWidgets

B.2 Deformable Organism Examples 9

e Geom MeshSpatialObjeetdType,nDims, MType, VType
http:/www.sfu.ca/ ~ cmceintos/IDO/doxygen/html/classmial_1 1 geom__ mesh _spatial_object.html

e Phys EulerDataType, TGradientimage,nDims,MType,VType
http:/www.sfu.ca/ ~ cmceintos/IDO/doxygen/html/classmial_1 1 phys eule r.html

e Phys LevelSekDataType,InputimageType,nDims,MType,VType
http://www.sfu.ca/ ~ cmceintos/IDO/doxygen/html/classmial_1 1 phys leve |_set.html

e Beh TranslateAlk Type,nDims>
http:/www.sfu.ca/ ~ cmceintos/IDO/doxygen/html/classmial_1 1 beh trans late_all.html

e Beh UniformScale<Type,nDims>
http://www.sfu.ca/ ~ cmceintos/IDO/doxygen/html/classmial_1 1 beh unifo rm_scale.html

e Beh_SearchForObjeetType, TInputimage,nDins
http://www.sfu.ca/ ~ cmceintos/IDO/doxygen/html/classmial_1 1 beh searc h_for_object.html

e Def_TranslateAlk Type,nDims>
http://www.sfu.ca/ ~ cmcintos/IDO/doxygen/html/classmial_1 1 def trans late_all.html

e Def_UniformScale<Type,nDims>
http://www.sfu.ca/ ~ cmcintos/IDO/doxygen/html/classmial_1 1 def unifo rm_scale.html

e Ctrl_ScheduleDriverclass Type, int nDims
http://www.sfu.ca/ ~ cmcintos/IDO/doxygen/html/classmial_1 1 ctrl__sche dule_driven.html

e SenseGradienkDataType, TIinputimage, TGradientimage, nDims
http://www.sfu.ca/ ~ cmcintos/IDO/doxygen/html/classmial_1 1 sense_ gra dient.html

B.2 Deformable Organism Examples

There are numerous example DOs included with the framework.

e itkOrganism<ImageType, ImageType, GradientimageType, dType, nDims> A de-
rived organism based on a itk::ImageTolmageFilter that contains no default layers.
http://www.sfu.ca/ ~ cmcintos/IDO/doxygen/html/classitk_1 1 itk_organism html

e Org_LevelSetSchedule<ImageType, ImageType, GradientlmageType, dType, nDims>
A geodesic active contoursl][based DO that uses a schedule driven cognitive layer.
http:/www.sfu.ca/ ~ cmceintos/IDO/doxygen/htmi/classitk_ 1 1 org level set_schedule.html

e Org_EulerSchedule<lmageType, ImageType, GradientimageType, dType, nDims>
A 3D spring-mass 1| based DO that uses a schedule driven cognitive layer.
http://www.sfu.ca/ ~ cmceintos/IDO/doxygen/html/classitk_ 1 1 org_ euler_ schedule.html

http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_geom___mesh_spatial_object.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_phys___euler.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_phys___level_set.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_beh___translate_all.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_beh___uniform_scale.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_beh___search_for_object.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_def___translate_all.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_def___uniform_scale.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_ctrl___schedule_driven.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_sense___gradient.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageFilter.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classitk_1_1_itk_organism.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classitk_1_1_org___level_set_schedule.html
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classitk_1_1_org___euler_schedule.html

10

C The Visual Interface to I-DO

We have also developed a graphical user interface to the I-DO frarketiat allows its users to vi-
sualize the geometry of created DOs as well as observe their deformatioralitime. It gives the
user the ability to load DOs as dll files, while allowing the developer to defintowrused interfaces
via the DefOrgAdapter class. The GUI is based on, and therefore requires, KWWidegets,, An&
SOViewer. Future versions will facilitate interaction with DOs through mouse aiiven forces, and
possibly other forms of input. Complete documentation of the viewer will be madaable at a
later date, but many details reside in its doxygen. A binary of the viewer itabi@a for Windows at
http://hdl.handle.net/1926/228 IviewerApplication.zip.

http://www.sfu.ca/ ~ cmcintos/IDO/doxygen/html/classmial_1_1 def org_vie wer_adapter_base.html

D Guide to users

This section provides information to those who wish to use, or contribute toahetvork.

Hello I-DO

In this section we present a simple “Hello [I-DO] World” example that prosidetep by step guide to how
a new user can build and run a simple DO.

1. Download and compile ITK 2.4 or greater (seew.itk.org).

2. Download fittp://hdl.handle.net/1926/228 /IDO.zip) and configure the I1-DO framework using
CMake (vwww.cmake.org) and the CMakeLists.txt file found in the root-most directory. Make sure to
leave "Build Examples” set to "ON".

3. Compile the created project. This will build the I-DO library, and two exdidata

4. Run YourBuildDirectory/examples/basic/defQlmsic from command line, providing input and out-
put image names, a schedule name, and a mesh name. (e.g. cube.mhd out.nSuthedlde3d.txt
cubeMesh3d.meta)

5. The DO will run, and output a final binary image using the file name pravide
Users can follow these procedures for any of the provided examples axtimples directory.

e Basic - The same example as shown in “Building A Deformable Organism”. idgmnass DO using
a schedule driven cognitive layer along with a few example behaviorslafudmations (Figure

top).

e Advanced - A multi-organism application that uses two pre-made DOs in Bsegue
Org_EulerSchedule begins the segmentation process and initialzes _LevelSetSchedule with
its output, which then proceeds to refine the segmentation results beforegwaritirio file (Figure3
bottom).

http://hdl.handle.net/1926/228
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/classmial_1_1_def_org_viewer_adapter_base.html
www.itk.org
http://hdl.handle.net/1926/228
www.cmake.org

Figure 3: Two example DOs progressing from left to right. Top: The basic example initialized with a cube, performing
a Beh_UniformScale , and coming to rest. Bottom: The advanced example initialized with a cube, smoothing under
Phys _LevelSet after a Beh_UniformScale under Phys _Euler , and coming to rest via image forces. The complete
videos are available at http:/hdl.handle.net/1926/228 /{basic,advanced }.wmv

Building A Deformable Organism

This example walks the reader through creating a DO by individually instargfiatid attaching the layers.
This is in contrast to using an already created DO, which can be instantateg, and used just like any
ITK filter.

The first step is to choose and instantiate a DO shell (one having no builtars)aysing the standard ITK
itk::SmartPointer approach. In this case the DO is an ITitk::ImageTolmageFilter , and must be
provided with an input image via ti#etinput method.

typedef itk::ltkOrganism <ImageType, ImageType, Gradien timageType, float, 3> organismType;
organismType::Pointer testOrg = organismType::New();

std::cout << "Organism created..." << std:endl;

testOrg->Setinput(reader->GetOutput());

Now we can begin instantiating and attaching implementations of the layers/comipdhe DO needs

to function. For simplicity, all derived classes of a particular layer aréixa@ with an abbreviation of

that layer (Org for Organism, Ctrl for Control, Beh for Behavior, Sefeg Sensor, Phys for Physics, Def
for Deformation, and Geom for Geometrical). Next we will instantiate a getasoalculate the gradient
information used as an external force during the deformation simulation®®ykics layer.

typedef Sense_Gradient<float,ImageType,Gradientimage Type,3> gradientSensorType;
gradientSensorType::Pointer gradientSensor = gradientS ensorType::New();

The sensor requires its publicly defingghsorin as input. Here we create a pointer to the class, and set its

values. This allows all sensors to be ran from a commonmethod, with their own customized input.

gradientSensorType::sensorin::Pointer input = gradient SensorType::sensorin::New();
input->sigma = 1.0;

reader->Update();

input->imageln = reader->GetOutput();

http://hdl.handle.net/1926/228
http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageFilter.html

12

The gradient sensor can then be ran. Note that at this $gnsors themselves do not fit into the ITK
pipeline, and thus the readetlpdate() method must be called prior to running the sensor.

gradientSensor->run(input);

Finally, its output can be obtained by constructingeasorOut itk::SmartPointer and providing the
appropriate downcast on the pointer returned bygtt@utput method.

gradientSensorType::sensorOut::Pointer output = (gradi entSensorType::sensorOut *) (gradientSensor->getOutpu

Next create th@hysics andGeometrical layers. Notice that the type of external force image is provided
as an input type to thehysics layer.

typedef Phys_Euler<float,GradientimageType,3> PhysLay erType;
typedef Geom_MeshSpatialObject<float,3> GeometricType ;
PhysLayerType::Pointer physLayer = PhysLayerType::New();
GeometricType::Pointer geomLayer = GeometricType::New();

Then set thePhysics layer to use the external force image calculated by the gradient senddhen
newly constructedseometrical layer, and setup the topology of ti@eometric layer (in this case an
ITK itk::MeshSpatialObject). Finally, attach both to th@rganism .

physLayer->setExternalForces((void *) &(output->image Oout));
physLayer->setGeometry(geomLayer);
std::cout << "External forces set." << std:endl;

geomLayer->readTopologyFromFile(topologylnputFileNa me);
std::cout << "Topology read from ™ << topologylnputFileNa me << ".." << std:endl

testOrg->setPhysicsLayer(physLayer);
testOrg->setGeometricLayer(geomLayer);
std::cout << "Physics and Geometric layers added..." << std endl;

Create &Cogntive layer, set its appropriate options, and attach it to the DO. In this case iteqlyres a
Schedule text file (e.g. eulerSchedule3D.txt).

Ctrl_ScheduleDriven<float, 3>::Pointer cgL = Ctrl_Sched uleDriven<float, 3>::New();
cgL->setSchedule(scheduleFileName);
testOrg->setCognitiveLayer(cgL);

Now begin creating and attaching simple behaviors, and deformations. Nibie tase, the behaviors and
deformations do not require any additional parameters or settings.

Beh_TranslateAll<float, 3>::Pointer behl = Beh Translat eAll<float,3>::New();
Beh_UniformScale<float, 3>::Pointer beh2 = Beh_UniformS cale<float,3>::New();
Def_Translation<float, 3>::Pointer defl = Def_Translati on<float,3>::New();

Def_UniformScale<float, 3>::Pointer def2 = Def_UniformS cale<float,3>::New();

http://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
http://www.itk.org/Doxygen/html/classitk_1_1MeshSpatialObject.html

13

testOrg->addBehaviour(behl);
testOrg->addBehaviour(beh?2);
testOrg->addDeformation(defl);
testOrg->addDeformation(def2);

Attach a more advanced behavior and set its additional parameters. Iraseistaieeds an image and a
Geometric pointer for its internabense _Avgintensity ~ sensor.

Beh_SearchForObject<float,ImageType,3>::Pointer beh3 = Beh_SearchForObject<float,ImageType,3>::New();
beh3->image = reader->GetOutput();

beh3->geomLayer = geomLayer;

testOrg->addBehaviour(beh3);

The Organism is ready to run. CallindJpdate() on the writer will cause the DO to simulate for a set
amount of DO time. Here we set the DOrtm for 25 iterations with a singl&pdate()

testOrg->setRunTime(120);
writer->Setlnput(testOrg->GetOutput());

try
{
writer->Update();
1
catch(itk::ExceptionObject & err)
{
std::cout << "ExceptionObject caught!" << std::endl;
std::cout << err << std::endl;
return -1;
!

Finally, in addition to the binary output available on the writer the DO’s mesh eamrliten back to file.

testOrg->writeNodesToFile(nodeOutputFileName);
std::cout << "Nodes written to ™ << nodeOutputFileName << " " << stdendl;

Extending Existing DOs

Extending existing organisms is as easy as followingBhéding A Deformable Organisraxample and
attaching additional layers.

Creating New DOs and Layers

Detailed information about creating new DOs and layers will be included in titigrdent in a later revision.
In the mean time, interested users are referred to the doxygen documentaittbroutlines how each pure
virtual function of the ABCs should be defined in a derived class. We Wsth @rovide skeleton code
generators, that will give those wishing to create new layers a “fill in thelslaoption.

http://hdl.handle.net/1926/228 /doxygenManual.pdf
or
http://www.sfu.ca/ ~ cmcintos/IDO/doxygen/html/index.html

http://hdl.handle.net/1926/228
http://www.sfu.ca/~cmcintos/IDO/doxygen/html/index.html

References 14

References

[1] Vincent Caselles, Ron Kimmel, and Guillermo Sapiro. Geodesic activeouo InICCV, pages

[2]

[3]

[4]

[5]

[6]

[7]

(8]

694-699, 1995B.2

Laurent D. Cohen. On active contour models and ballodgGIP: Image Underst.53(2):211-218,
1991.2.4

Ghassan Hamarneh, Tim Mclnerney, and Demetri Terzopoulo$oridable organisms for automatic
medical image analysis. MICCAI, pages 66—76, 2001

Ghassan Hamarneh and Chris McIntosh. Physics-based deflerorglnisms for medical image anal-
ysis. SPIE Medical Imaging5747:326-335, 2008

G. Hamarnerh and C. McIntoshParametric and Geometric Deformable Models: An application in
Biomaterials and Medical Imagerghapter 12: Deformable Organisms for Medical Image Analysis.
Springer Publishers, 1 edition, 2006.

C. Mcintosh and G. Hamarnerh. Spinal crawlers: Deformablerosgas for spinal cord segmentation
and analysisMICCAI, 2006.1

C. Mclintosh and G. Hamarnerh. Vessel crawlers: 3d physicalled deformable organisms for vasu-
lature segmentation and analydiSEE Conference on Computer Vision and Pattern Recognifioa6.
1,1,B.2

D. Terzopoulos, X. Tu, and R. Grzeszczuk. Artificial fishes:t@omous locomotion, perception,
behavior, and learning in a simulated physical woAdtificial Life, 1(4):327-351, 19942.6

	Introduction
	ITK Deformable Organisms: Motivation and Introduction
	DOs Requirements

	Implementation
	Organism
	Control Center
	Sensor
	Behavior
	Physics
	Deformations
	Geometric

	Conclusions
	Acknowledgements
	Requirements
	Examples
	Layer Examples
	Deformable Organism Examples

	The Visual Interface to I-DO
	Guide to users
	Hello I-DO
	Building A Deformable Organism
	Extending Existing DOs
	Creating New DOs and Layers

	Introduction
	ITK Deformable Organisms: Motivation and Introduction
	DOs Requirements

	Implementation
	Organism
	Control Center
	Sensor
	Behavior
	Physics
	Deformations
	Geometric

	Conclusions
	Acknowledgements
	Requirements
	Examples
	Layer Examples
	Deformable Organism Examples

	The Visual Interface to I-DO
	Guide to users
	Hello I-DO
	Building A Deformable Organism
	Extending Existing DOs
	Creating New DOs and Layers

