The Generalised Image Fusion Toolkit (GIFT)

Release 1.1
Daniel Mueller’

July 20, 2006

'Queensland University of Technology, Brisbane, Australia

Abstract

Image fusion provides a mechanism to combine multiple images into a single representation to
aid human visual perception and image processing tasks. Such algorithms endeavour to create
a fused image containing the salient information from each source image, without introducing
artefacts or inconsistencies. Image fusion is applicable for numerous fields including: defence
systems, remote sensing and geoscience, robotics and industrial engineering, and medical
imaging. In the medical imaging domain, image fusion may aid diagnosis and surgical plan-
ning tasks requiring the segmentation, feature extraction, and/or visualisation of multi-modal
datasets.

This paper discusses the implementation of an image fusion toolkit built upon the Insight
Toolkit (ITK). Based on an existing architecture [15, 17], the proposed framework (GIFT) offers
a ‘plug-and-play’ environment for the construction of n-D multi-scale image fusion methods.
We give a brief overview of the toolkit design and demonstrate how to construct image fusion
algorithms from low-level components (such as multi-scale methods and feature generators).
A number of worked examples for medical applications are presented in Appendix A, including
quadrature mirror filter discrete wavelet transform (QMF DWT) image fusion.

Keywords: image fusion, multi-modal, wavelet, ITK

1 Introduction

Image fusion algorithms seek to combine multiple input images into a single representation. Such
algorithms have numerous applications including the segmentation, feature extraction, and/or visu-
alisation of multi-modal medical images. This paper presents an open-source toolkit for multi-scale
image fusion and aims to be the start of a central repository for fusion algorithm implementations.
The Generalised Image Fusion Toolkit (GIFT) currently implements quadrature mirror filter discrete
wavelet transform (QMF DWT) multi-scale fusion algorithms. GIFT is built upon the Insight Toolkit
(ITK) - an open-source software system able to perform a range of registration and segmentation
algorithms in two- or three-dimensions [24]. Continuing the concept of generic programming advo-
cated by ITK, GIFT has a flexible design allowing for the easy addition of new components and the
processing of both 2-D and 3-D images.

The Generalised Image Fusion Toolkit (GIFT) 2

This paper is organised into a number of different sections. The first section discusses general
image fusion concepts to provide a brief introduction for those not familiar with the field. The next
section discusses the design and currently implemented components of GIFT. Following this we
give a brief of list of instructions for getting started using the toolkit. Finally we discuss the areas
of current and future development. Two examples are walked through in considerable detail in
Appendix A.

2 Concepts

Multi-sensor fusion is the task of combining data from multiple input sensors, which can facilitate
analysis not possible from a single sensor alone [4]. Image fusion is a specialisation of multi-sensor
fusion in which the input and output signals are images. Multi-sensor fusion has been organised
into a hierarchy of increasing abstract tasks [5]:

Signal-level is the lowest form of multi-sensor fusion. At this level multiple raw input signals
are fused into a single output signal. For image fusion, the signal-level is known as
‘pixel-level’.

Feature-level fusion operates on feature vectors extracted from either the input signals them-
selves or the output of the signal-level fusion stage.

Decision-level fusion generates probabilistic decision information obtained from processing
the results from lower levels.

The general goal of image fusion is to combine a set of input images to generate a single output
image which (a) preserves the salient information from each input image, (b) suppresses noise and
irrelevant parts of inputs images, and (c) does not generate distortions, artefacts, or inconsistencies
in the fused output [6]. A wide variety of algorithms have been proposed to implement these tenets.
These algorithms can be grouped into the following categories:

Arithmetic image fusion is a simple and efficient scheme, which unfortunately suffers from
loss of contrast due to the destructive nature of superposition. This type of fusion applies
a weight (w,) to each input image (i,) and then arithmetically combines these to form
the output image (f), as shown below:

F(X) =wii1(X) +waiz (X) + ... + wyin(X) (1)

Most commonly the weights are chosen to give an averaging effect (ie. w, = 1/n). An-
other approach is to compute the weights via principal component analysis (PCA) - the
weights are set as the eigenvector components corresponding to the largest eigenvalue
computed after ‘unfolding-backfolding’ the image matrix [3].

Colour space fusion represents data using different colour channels, exploiting the ability
of the human visual system distinguish three colour channels. The simplest approach
maps each input to a single channel in the chosen colour space (eg. RGB, HSV, YUV,

The Generalised Image Fusion Toolkit (GIFT) 3

CIELAB, etc). As briefly discussed in [15], the obvious challenge with this approach is to
create meaningful mappings from input to channel. Within the medical imaging domain
this form of fusion is most commonly used for structural-functional images (eg. CT-PET
fusion).

Multi-scale image fusion is a biologically-inspired method which fuses images at different
spatial resolutions. Similar to the human visual system, this fusion approach operates
by firstly decomposing the input images into a resolution pyramid of humerous levels.
Each level contains one or more bands representing orientation or detail/approxima-
tion information. Following this decomposition, the fusion now takes place between the
corresponding coefficients or samples in each band. The fused pyramid is then recon-
structed to form the final fused output image. Figure 1 depicts this process.

Other methods also exist including: neural network, statistical a priori models, and optimiza-
tion based approaches.

Input 1 a
=:| Fuse Output
Decompose :l >
> :| Reconstruct
Input 2 H

Figure 1: Multi-scale fusion flow diagram for two input images.

Currently GIFT is concerned with pixel-level multi-scale image fusion. However, the modular design
allows for the future inclusion of new pixel-level and feature-level operations. For the interested
reader, a number of other image fusion toolkits are available as detailed below:

MATIFUS: a MAtlab Toolbox for Image FUSion: by G. Piella [16, Appendix A].
Image Fusion Toolbox for Matlab: by O. Rockinger [22].
The Image Fusion Toolkit for Matlab: by E. Canga [2]

The main benefits of GIFT over these existing toolkits are it's open-source nature, extensibility,
‘plug-and-play’ architecture, and generic implementation (ie. the same code operates for both 2-D
and 3-D images). Moreover, GIFT is easily integrated with ITK’s rich set of registration methods -
an essential first step for image fusion.

The Generalised Image Fusion Toolkit (GIFT) 4

3 Design

3.1 Architecture

The architectural design of GIFT is inspired by existing work undertaken by G. Piella [15, 17]. The
main difference is that GIFT has generalised the concepts of activity measure, match measure, and
region-based measures into a single generic concept termed feature generators. There are four
(4) major components within a GIFT pipeline:

Multi-scale method: This is method for deconstructing and reconstructing into a scale-
space image pyramid.

Feature generators: Any number of feature generators can be added to the fusion pipeline.
These generators are responsible for processing the multi-level multi-band images to
extract ‘features’ used to guide the fusion process. The output of a feature generator is
termed a feature-map.

Weight generators: Weight generators are responsible for taking multiple feature-maps and
creating weight-maps. The resultant weight-maps indicate which parts of each level-
band image will contribute to the final fused output.

Weight combiner: The weight combiner is responsible for collapsing the input image pyra-
mids into a single output pyramid.

The GIFT pipeline is depicted in Figure 2. Please note that while two multi-scale method boxes are
shown, only one multi-scale method is set for the fusion pipeline. Multiple feature generators can be
specified, and must be linked to the weight generator responsible for processing the feature. Only
one weight combiner is specified for the pipeline. Theoretically multiple n-D input images can be
fused using this pipeline, however testing has only focused on 2-D and 3-D images.

Multi-scale Method I i
f Feature Generators i . 0 Multi-scale Method
[Deconstruction] u Weight Generators Weight Combiner [Reconstruction]
Input 1 J l l

Input 2

v

Output

Input N

Figure 2: Generalised Image Fusion Toolkit (GIFT) architecture diagram.

The Generalised Image Fusion Toolkit (GIFT) 5

3.2 Components
Multi-scale Multi-level Image Filter

At the heart of GIFT is the gift::MultilevelMultibandImageFilter. This subclass of
itk::ImageToImageFilter encapsulates the concept of an input/output image pyramid (a set of images
representing multiple levels and bands). All filters within GIFT (excluding gift::ImageFusionFilter) in-
herit from gift::MultilevelMultibandImageFilter. This common base adds functionality for easily
accessing inputs and/or outputs consisting of multi-level, multi-band image pyramids. The inputs/outputs are
indexed as shown in Figure 3, and can be accessed either via their index (as normal) or using an image-
level-band 3-tuple (eg. image=2, level=0, band=1).

Level 1, bands 0-3 Level 2, bands 0-3

e N Y
2 oll1(/2l3||4all5]/6]l7

MultilevelMultibandimageFilter

y

Output

Figure 3: gift::MultilevelMultibandImageFilter allows access to inputs/outputs using a level-band
tuple, as well using the index.

Multi-scale Methods

Obviously, multi-scale image filters derive from gift::MultilevelMultibandImageFilter. For decon-
struction, these filters input 1 image and output an array of images accessible via a level-band tuple. For
reconstruction the number of inputs and outputs are reversed. The number of images in a band is method-
defined, and the number of levels is user-defined.

Image fusion techniques have used a number of different multi-scale methods including: the laplacian pyra-
mid [1], QMF DWT [7, 11], shift-invariant DWT (SIWT) [21, 22], dual-tree continuous wavelet transform (DT-
CWT) [12, 6], morphological pyramids [9, 10], and others.

Currently GIFT has only implemented one multi-scale method - quadrature mirror filter discrete wavelet trans-
formation (QMF DWT). This method is encapsulated by the gift::0mfilaveletImageFilter. Further de-
tails regarding this filter can be found in Appendix A. More multi-scale methods are in development and once
completed will easily drop into the GIFT architecture.

Feature Generators

Feature generators operate on the outputs of the multi-scale method and extract relevant ‘features’ which can
guide the fusion process. The feature generators within GIFT can operate at the pixel-level or feature-level.

The Generalised Image Fusion Toolkit (GIFT) 6

Currently only pixel-level generators have been implemented, however a number of feature-level generators
are under development.

The most fundamental feature is the value of the image coefficient or sample itself. The
gift::SampleActivity feature generator provides subsequent weight generators access to this fea-
ture. Another common feature is the absolute value of the sample, which is provided by the
gift::AbsSampleActivity. To ensure consistency, it is common to compute a measure of activity for
a small window centred at each pixel (eg. 3 x 3 or 5 x 5 windows are common for 2-D images). GIFT
provides facilities for this form of activity computing through the gift::MaximumWindowSampleActivity
and gift::MedianWindowSampleActivity, which find either the maximum or median within the window
respectively.

Weight Generators

Weight generators combine multiple feature-maps into a single weight-map for each input level-band image.
A weight-map indicates the proportion of contribution each level-band image makes to the final fused output.
Weight generators typically apply some sort of logic, threshold, and/or arithmetic operation to the feature-
maps.

For activity-based features (ie. sample, absolute value sample, and window-based features) the simplest
approach is to choose the maximum feature from across the input images. For example, the weight generator
looks at the feature value for level=1, band=2 in all input images and produces a weight-map with 1.0 for
the level-band image with the maximum value and 0.0 for all other inputs. This functionality is commonly
termed ‘select max’ and is implemented by gift::SelectMaximumFeature. Alternatively we may wish to
favour one input over the others, so in this case we would always select the feature from the given input.
This functionality is handled by the gift::SelectFeature. Finally, we can simply take the average of all
features, which is implemented by the gift: :AverageFeature filter.

The application of weight generators typically depends on the type of band image. For example, de-
tail images are best handled with a ‘select max’ approach (recall that in the case of QMF DWT, detail
images contain sparse high-frequency information). On the other hand, approximation images contain
more compact information and an averaging approach is common practice. GIFT provides a mechanism
to override the weight generator for specific level-band images. The default generator is specified via
gift::ImageFusionFilter::SetDefaultWeightGenerator(.) and specific generators can be over-
ridden using gift::ImageFusionFilter: :OverrideWeightGenerator(.).

Weight Combiners

The weight combiner has the ultimate responsiblity for collapsing the weight-maps into a single image pyra-
mid. At the moment only one weight combiner exists within GIFT - gift::LinearWeightCombiner. This
class generates the final level-band image by applying a linear weighted operation to each input level-band
image using weights from each weight-map.

The Generalised Image Fusion Toolkit (GIFT) 7

4 Using GIFT

To get starting using GIFT please follow the below directions:

1. Download ITK 2.4.1 or higher from http://www.itk.org.

2. Download GIFT from the Insight Journal.

3. Download CMake 2.2.3 or higher from http://www.cmake.org.

4. Configure and compile ITK using CMake (see the ITK Getting Started Manual for help).

5. Configure GIFT using CMake (follow the same procedure for ITK). Point CMake to the top-level folder
and ensure all build variables are correct. Make sure the ITK_DIR variable is set - if ITK was not
automatically found by the build system you will need to manually set this variable.

6. Open the generated project file in your favourite compiler and select Build Solution (or similar).
Ensure that you compile GIFT with the same configuration (ie. debug or release) as you did ITK.

7. Experiment with the provided examples or create your own image fusion algorithm using
gift::ImageFusionFilter. A number of test images can be found in the Testing/Data/Input
directory, and further images are available from http://www.imagefusion.org.

Two worked examples are presented in Appendix A and some other examples are included with the toolkit
source-code.

5 Future Work

GIFT currently only implements basic image fusion algorithms. However, it is designed for the easy addition
of new components which can be ‘plugged’ into the gift:ImageFusionFilter. In particular, the following
components are being considered for development:

Multi-scale methods: Laplacian and morphological image pyramid methods can be implemented in a simi-
lar fashion as QMF DWT.

Activity-based feature generators: a number of useful activity measures have been reported in literature,
including a directive contrast activity measure [19] and a windowed-squared activity measure [15,
pp.31]. These pixel-level methods could be easily added as feature generators.

Region-based feature generators: a number of interesting region-based fusion methods have been ex-
plored in current literature [15, 8, 6, 13]. These feature-level methods could be added as feature
generators.

Another important area of development is image fusion metrics. A number of objective comparison metrics
have been investigated in literature and it would be fitting to see these added to GIFT. Some of these include
the root mean square error (RMSE) between a “ground-truth” image and the fused image [25], the RMSE
between the input images and the fused image [10], image entropy [25], mutual information [20], spatial
frequency [25, 26], edge strength and orientation [14], and the image quality index (1Ql) [23, 18].

http://www.itk.org
http://www.insight-journal.org
http://www.cmake.org
http://www.itk.org/CourseWare/Training/GettingStarted-I.pdf
http://www.imagefusion.org

The Generalised Image Fusion Toolkit (GIFT) 8

There are also a number of smaller areas needing attention. Currently gift:ImageFusionFilter
does not support progress accumulation, which would be useful seeing some fusion algorithms can
take significant computation time (especially for 3-D input images). Finally, there is a known bug with
gift::OmfWaveletImageFilter: if Update () is not explicitly called, the reconstructed output image has
the wrong dimensions (see Examples/MultiscaleMethods/giftExampleMultiscaleQmfWavelet.cxx
for further details).

6 Conclusions

We have presented the design and initial implementation of GIFT - the Generalised Image Fusion Toolkit.
Construction of simple n-D image fusion schemes using QMF DWT is possible using the toolkit. New com-
ponents can be easily added to enable the implementation of other image fusion algorithms. A number of
examples using the toolkit are discussed in Appendix A.

40
41

73
74
76
77

88
89
90
91

99
100

The Generalised Image Fusion Toolkit (GIFT) 9

Appendix A Examples

A.1 QMF Wavelet Analysis

The source code for this example can be found in
Examples/MultiscaleMethods/giftExampleMultiscaleQmfiWavelet .cxx.

The following example shows the usage of gift::QmfWaveletImageFilter. This particular fil-
ter performs QMF wavelet decomposition or reconstruction on the given input image(s) using a
user-specified biorthogonal (bior) filter kernel. gift::QOmfWaveletImageFilter is a subclass of
gift::MultilevelMultibandImageFilter and has a user configurable number of levels. This filter has
24ims hands per level - the first band is a decimated approximation image and the remaining bands are
detail images for each direction. The number of inputs and outputs is dependent on the mode of oper-
ation: deconstruction or reconstruction. In deconstruction mode, the filter takes 1 input image and outputs
levels x bands x 24 output images. In reconstruction mode, the number of inputs and outputs are swapped.

To use the gift::QmfWaveletImageFilter the first step is to include the relevant headers:

#include "giftBiorthogonalWaveletOperator.h"
#include "giftQmfWaveletImageFilter.h"

We now setup the internal image type, making sure we use a real pixel type (either float or double) and
remembering itk:ImageFileReader will cast the input image to the specified internal type. The number of
dimensions has been tested for 2-D and 3-D images, however this example is compiled for 2-D images.

const unsigned int Dimension = 2;

typedef float InternalPixelType;

typedef itk::Image<InternalPixelType, Dimension>
InternallImageType;

The gift::0mfWaveletImageFilter takes the filter kernel coefficients as a template argument. A number
of biorthogonal filter kernels are defined in gift: :BiorthogonalWaveletOperator. We define the wavelet
kernels and filter as such:

typedef gift::BiorthogonalWaveletOperator<InternalPixelType, Dimension>
BiorWavelet;

typedef gift::QmfWaveletImageFilter <InternallImageType, BiorWavelet>
WaveletFilter;

We now create the operator by specifying the desired bior kernel:

//Create the wavelet operator
BiorWavelet bior (BiorWavelet ::Bior_1_3);

The available kernels are found in Source/giftBiorthogonalWaveletOperator.h:

The Generalised Image Fusion Toolkit (GIFT) 10

51 Bior_1_1 = 0x11,
52 Bior_1_3 = 0x13,
53 Bior_1_5 = 0x15,
54 Bior_2_2 = 0x22,
55 Bior_2_4 = 0x24,
56 Bior_2_6 = 0x26, //Not yet implemented
57 Bior_2_8 = 0x28, //Not yet implemented
58 Bior_3_1 = 0x31,
59 Bior_3_3 = 0x33,
60 Bior_3_5 = 0x35,
61 Bior_3_7 = 0x37, //Not yet implemented
62 Bior_3_9 = 0x39, //Not yet implemented
63 Bior_4_4 = 0x44, //Not yet implemented
64 Bior_5_5 = 0x55, //Not yet implemented
65 Bior_6_8 = 0x68 //Not yet implemented

We now create and setup a filter for deconstruction,

103 WaveletFilter::Pointer filterWaveletDeconstruct = WaveletFilter::New();
105 filterWaveletDeconstruct->SetNumberOfLevels (NumberOfLevels);

106 filterWaveletDeconstruct->SetDeconstruction();

107 filterWaveletDeconstruct->SetWavelet (bior);

and a filter for reconstruction (note that NumberOfLevels is a command line argument).

113 WaveletFilter::Pointer filterWaveletReconstruct = WaveletFilter::New();
115 filterWaveletReconstruct->SetNumberOfLevels (NumberOfLevels);

116 filterWaveletReconstruct->SetReconstruction();

117 filterWaveletReconstruct->SetWavelet (bior);

In this particular example we simply want to deconstruct the input image, save these deconstructed images,
and reconstruct the output image (to confirm the input and output are the same). To achieve this we loop over
filterWaveletDeconstruct outputs, construct the output filename using string replace functions, write the
intermediate outputs, and attach them to the inputs of filterWaveletReconstruct.

122 for (unsigned int index=0; index < filterWaveletDeconstruct->GetNumberOfOutputs(); index++)
123 {

124 //Set input for reconstruction

125 filterWaveletReconstruct->SetInput (index, filterWaveletDeconstruct->GetOutput (index));
126

127 //Construct output filename

128 char strIndex [5];

129 sprintf (strIndex, "%02d", index);

130 std::string outputFilename = OutputDeconstructionFilepattern;

131 itksys::SystemTools ::ReplaceString(outputFilename, "{0}", strIndex);
138

139 //Setup Writer

140 WriterType::Pointer writer = WriterType::New();

142 writer->SetFileName (outputFilename.c_str ());

143 writer->SetInput (filterRescale->GetOutput ());

144

145 //Perform write

146 try

147 {

148 writer->Update ();

149 }

156 }

The Generalised Image Fusion Toolkit (GIFT) 11

Finally we update filterWaveletReconstruct and write the final reconstructed image:

158 //Force update on reconstruction filter
165 filterWaveletReconstruct->Update ();

170

171 //Setup final writer

172 WriterType::Pointer writer = WriterType::New();
174 writer ->SetFileName (OutputFilename);

175 writer->SetInput (filterCast->GetOutput ());
176

177 //Perform write

178 try

179 {

180 writer ->Update ();

181 }

Some results from the example are shown in Figure 4.

(a) Input (Ao)

(j) Reconstructed output

Figure 4: Output from Examples/MultiscaleMethods/giftExampleMultiscaleQmfWavelet.cxx with
input=ctheadl.png and NumberOfLevels=2.

109
110
111
114
115
116
117
118

The Generalised Image Fusion Toolkit (GIFT) 12

A.2 3-D Image Fusion for Multi-modal Visualisation

The source code for this example can be found in
Examples/Fusion/giftExampleFusionQmfWaveletl.cxx.

The following example shows the usage of gift::ImageFusionFilter. To setup the filter we must set
the multi-scale method, any feature generators, any weight generators, and a weight combiner. In this
example we use a ‘select max’ approach for detail level-band images, and an average approach for ap-
proximation level-band images. We use open-source data from the NLM Image Data Collection Project’.
giftExampleRegistration is used to perform rigid registration of the two volumes, and invoked using:

giftExampleRegistration
Testing/Data/Input/P2_MRA RESCALE.mhd
Testing/Data/Input/P2_MRI_T1_PRE_RESCALE.mhd
Testing/Data/Input/P2_T1_PRE_REGISTERED.mhd

with final values as below:

Result =

versor X = -0.00731512
versor Y = -0.000214034
versor 7% = -0.0250347

Translation X = 23.5739
Translation Y = 18.397
Translation Z = 22.1149

Iterations = 51
Metric value = 86.6556
Matrix =

0.998746 0.0500554 -6.1659e-005
-0.0500491 0.99864 0.014636
0.000794185 -0.0146145 0.999893

Offset =
[18.9281, 22.3807, 23.4384]

Following the preparation of the input images, the first step in the fusion process is to create a multi-scale
method, in this case gift::QmfWaveletImageFilter:

typedef gift::BiorthogonalWaveletOperator<InternalPixelType, Dimension>
BiorWavelet;

BiorWavelet bior (BiorWavelet::Bior_3_5);

typedef gift::QmfWaveletImageFilter <InternallImageType, BiorWavelet>
WaveletFilterType;

WaveletFilterType::Pointer filterMultiscale = WaveletFilterType::New ();

filterMultiscale->SetNumberOfLevels (NumberOfLevels);

filterMultiscale ->SetWavelet (bior);

"http://nova.nim.nih.gov/Mayo/NLMDATA/Brain/Large AVM/

http://nova.nlm.nih.gov/Mayo/NLMDATA/Brain/LargeAVM/

121
122
123
124
125
126
127
128

131
132
133
134
135
136
137
138

141
142
143
144

147
148
149

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

The Generalised Image Fusion Toolkit (GIFT)

13

This example then creates two feature generators:

typedef gift::SampleActivity<InternalImageType >
SampleActivityType;

typedef gift::AbsSampleActivity<InternallmageType >
AbsSampleActivityType;

SampleActivityType::Pointer featureSampleActivity =
SampleActivityType::New ();

AbsSampleActivityType::Pointer featureAbsSampleActivity =
AbsSampleActivityType::New ();

and two weight generators:

typedef gift::SelectMaximumFeature <InternallImageType >
SelectMaximumWeightGeneratorType;

typedef gift::AverageFeature<InternalImageType >
AverageWleightGeneratorTIype;

AverageWeightGeneratorType::Pointer averageWeightGenerator =
AverageWeightGeneratorType: :New () ;

SelectMaximumWeightGeneratorType::Pointer selectMaximumWeightGenerator =
SelectMaximumWeightGeneratorType: :New ();

We now link the weight generators to the appropriate feature generators. In this case each weight generator

uses the output of only one feature generator, however a weight generator could use more than one.

averageWeightGenerator ->AddFeatureToUse (

(AverageWeightGeneratorType::FeatureGeneratorPointer) featureSampleActivity);

selectMaximumWeightGenerator->AddFeatureToUse (

(SelectMaximumiWeightGeneratorType::FeatureGeneratorPointer) featureAbsSampleActivity);

Agift:

:LinearWeightCombiner is created as follows:

typedef gift::LinearWeightCombiner <InternallmageType >
WeightCombinerType;
WeightCombinerType::Pointer weightCombiner = WeightCombinerType::New ();

The only task remaining is to plug these components into the gift::ImageFusionFilter:

typedef gift::ImageFusionFilter<InternallmageType, WritelImageType>
ImageFusionFilterType;

ImageFusionFilterType::Pointer filterFusion = ImageFusionFilterType::New();

filterFusion->SetMultiscaleMethod(
(ImageFusionFilterType::MultiscaleMethodPointer) filterMultiscale);

filterFusion->AddFeatureGenerator (
(ImageFusionFilterType::FeatureGeneratorPointer) featureSampleActivity);

filterFusion->AddFeatureGenerator
(ImageFusionFilterType::FeatureGeneratorPointer) featureAbsSampleActivity);

filterFusion->SetDefaultWeightGenerator

(ImageFusionFilterType::WeightGeneratorPointer) selectMaximumiWeightGenerator);

filterFusion->OverrideWeightGenerator
(ImageFusionFilterType::WeightGeneratorPointer)averageWeightGenerator, 0,

filterFusion->SetWeightCombiner (
(ImageFusionFilterType::WeightCombinerPointer)weightCombiner);

filterFusion->SetInput (0, readerl->GetOutput ());

filterFusion->SetInput (1, reader2->GetOutput ());

filterFusion->Update ();

0);

The Generalised Image Fusion Toolkit (GIFT) 14

Note the following lines which allow us to override the weight generator for the approximation images in the
deconstructed image pyramids:

163 filterFusion->OverrideWeightGenerator
164 (ImageFusionFilterType::WeightGeneratorPointer) averageWeightGenerator, 0, 0);

Some results from the example are shown in Figure 5.

(a) MRA

(c) Arithmetic Fusion (d) QMF DWT Fusion

Figure 5: Slice 40 from the output of Examples/Fusion/giftExampleQmfWaveletFusionl.cxx with
input P2_MRA_RESCALE_WL.mhd and P2_T1_PRE_REGISTERED_WL.mhd. Notice in the fused output
that both the vessels (from MRA) and the grey-matter (from pre-contrast T1) are visible. Also note the loss of
contrast in the arithmetic fusion output compared to the QMF DWT fusion output. For the approximation band
images we used the weight generator gift::AverageFeature, and for the detail band images we used
gift::SelectMaximumFeature. The Bior_3_5 filter kernel was selected for QMF wavelet decomposition
with NumberOfLevels=2.

The Generalised Image Fusion Toolkit (GIFT) 15

References

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

P. Burt and E. Adelson. The laplacian pyramid as a compact image code. In |[EEE Transactions on
Communications, volume 31, pages 532-540, 1983. 3.2

E. Canga. Image fusion toolkit for Matlab. Technical report, University of Bath, 2003.
http://www.ablen.com/hosting/imagefusion/software/canga-image-fusion-code.zip. 2

P. Geladi and H. Grahn. Multivariate image analysis. Wiley, New York, 1996. 2

D. Hall. Mathematical techniques in multi-sensor data fusion. Artech House, Boston, 2nd edition, 2004.
2

D. Hall and J. Llinas. Multisensor data fusion. In David L Hall and James Llinas, editors, The Handbook
of Multisensor Data Fusion. CRC Press, Boca Raton, 2001. 2

J. Lewis, R O’Callaghan, S. Nikolov, D. Bull, and C. Canagarajah. Region-based image fusion using
complex wavelets. In Seventh International Conference on Information Fusion (FUSION), volume 1,
pages 555-562, 2004. 2, 3.2, 5

H. Li, B. Manjunath, and S. Mitra. Multisensor image fusion using the wavelet transform. Graphical
Models and Image Processing, 57(3):235-245, 1995. 3.2

Z.Li, Z. Jing, G. Liu, S. Sun, and H. Leung. A region-based image fusion algorithm using multiresolution
segmentation. In /intelligent Transportation Systems, volume 1, pages 96—101. IEEE, 2003. 5

G. Matsopoulos, S. Marshall, and J. Brunt. Multiresolution morphological fusion of MR and CT images
of the human brain. IEE Proceedings- Vision, Image and Signal Processing, 141(3):137—142, 1994. 3.2

S. Mukhopadhyay and B. Chanda. Fusion of 2D grayscale images using multiscale morphology. Pattern
Recognition, 34(10):1939-1949, 2001. 3.2, 5

S. Nikolov, D. Bull, C. Canagarajah, M. Halliwell, and P. Wells. Image fusion using a 3-D wavelet
transform. In Seventh International Conference on Image Processing And Its Applications, volume 1,
pages 235-239. IEEE, 1999. 3.2

S. Nikolov, P. Hill, D. Bull, and C. Canagarajah. Wavelets for image fusion. In A. Petrosian and F. Meyer,
editors, Wavelets in signal and image analysis, pages 213-244. Kluwer Academic Publishers, Dor-
drecht, The Netherlands, 2001. 3.2

S. Nikolov, J. Lewis, R. O’Callaghan, D. Bull, and C. Canagarajah. Hybrid fused displays: Between pixel-
and region-based image fusion. Proceedings of the Seventh International Conference on Information
Fusion (FUSION 2004), 2:1072—1079, 2004. 5

V. Petrovic. Subjective tests for image fusion evaluation and objective metric validation. Information
Fusion, In Press, Corrected Proof, 2006. 5

G. Piella. A general framework for multiresolution image fusion: from pixels to regions. Technical Report
PNA-R0211, Center for Mathematics and Computer Science, 2002.
http://www.cwi.nl/ftp/CWIireports/PNA/PNA-R0211.pdf. (document), 2, 3.1, 5

G. Piella. Adaptive wavelets and their application to image fusion and compression. PhD dissertation,
CWI and University of Amsterdam, 2003. 2

http://www.ablen.com/hosting/imagefusion/software/canga-image-fusion-code.zip
http://www.cwi.nl/ftp/CWIreports/PNA/PNA-R0211.pdf

The Generalised Image Fusion Toolkit (GIFT) 16

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

G. Piella. A general framework for multiresolution image fusion: from pixels to regions. Information
Fusion, 4(4):259-280, 2003. (document), 3.1

G. Piella and H. Heijmans. A new quality metric for image fusion. IEEE International Conference on
Image Processing, 3:173-176, 2003. 5

T. Pu and G. Ni. Contrast-based image fusion using the discrete wavelet transform. Optical Engineering,
39(8):2075—2082, 2000. 5

G. Qu, D. Zhang, and P. Yan. Information measure for performance of image fusion. Electronics Letters,
38(7):313-315, 2002. 5

O. Rockinger. Image sequence fusion using a shift-invariant wavelet transform. In International Confer-
ence on Image Processing, volume 3, pages 288-291, 1997. 3.2

O. Rockinger. Image fusion toolbox for Matlab. Technical report, Metapix, 1999.
http://www.metapix.de/toolbox.htm. 2, 3.2

A. Toet and M. Hogervorst. Performance comparison of different graylevel image fusion schemes
through a universal image quality index. In Ivan Kadar, editor, Signal Processing, Sensor Fusion, and
Target Recognition Xll, volume 5096, pages 552—-561. SPIE, 2003. 5

T. Yoo, M. Ackerman, W. Lorensen, W. Schroeder, V. Chalana, S. Aylward, D. Metaxes, and R. Whitaker.
Engineering and algorithm design for an image processing API: A technical report on ITK - the Insight
Toolkit. Proc. of Medicine Meets Virtual Reality, pages 586—592, 2002. 1

Y. Zheng, E. Essock, and B. Hansen. An advanced image fusion algorithm based on wavelet transform:
incorporation with PCA and morphological processing. In Image Processing: Algorithms and Systems
I1l; volume 5298, pages 177—-187. SPIE, 2004. 5

Y. Zheng, E. Essock, B. Hansen, and A. Haun. A new metric based on extended spatial frequency and
its application to DWT based fusion algorithms. Information Fusion, In Press, Corrected Proof, 2006. 5

http://www.metapix.de/toolbox.htm

	1 Introduction
	2 Concepts
	3 Design
	3.1 Architecture
	3.2 Components
	Multi-scale Multi-level Image Filter
	Multi-scale Methods
	Feature Generators
	Weight Generators
	Weight Combiners

	4 Using GIFT
	5 Future Work
	6 Conclusions
	Appendix A Examples
	A.1 QMF Wavelet Analysis
	A.2 3-D Image Fusion for Multi-modal Visualisation

